РЕШЕНИЯ

Вариант 17 (Решения тестовых заданий)

1. На 26 м 2 расход краски составит $26 \cdot 0.24 = 6.24$ (кг). Следовательно, останется 12 - 6.24 = 5.76 (кг).

Ответ: 4) 5.76 кг.

2.
$$(-2) \cdot (-3^2) - (-6) : (-3) = 18 - 2 = 16$$
.

Ответ: 1) 16.

3. При условии $y \ge 0$ (модуль есть величина неотрицательная) возведем обе части уравнения в квадрат (этим самым «убьем» модуль), затем перенесем все в левую часть и воспользуемся формулой разности квадратов:

$$(y-4)^2 - (2y)^2 = 0 \Leftrightarrow (-y-4)(3y-4) = 0.$$

Отсюда y = -4 или $y = \frac{4}{3}$. Подходит только положительный корень, который будет единственным.

Ответ: 3) $\frac{4}{3}$.

4. Красных роз юноша купил $15 \cdot 0.2 = 3$ штуки. Осталось 15 - 3 = 12 роз. Белые составят $12 \cdot 0.25 = 3$. Оставшиеся 12 - 3 = 9 — желтые.

Ответ: 5) 9.

5. Изданной формулы получим: $P = \frac{n}{140} = \frac{70}{140} = 0.5$ (м).

Ответ: 4) 0.5 м.

6. Осуществим перевод заданных в условии единиц в нужные. В итоге получим: $v = \frac{0.12(\kappa \textit{м})}{\frac{1}{60}(\textit{ч})} = 0.12 \cdot 60 = 7.2 \left(\frac{\kappa \textit{м}}{\textit{ч}}\right).$

Ответ: 5) 7.2.

7. Меньшая диагональ параллелограмма лежит против острого угла, который в нашем случае равен $180^{\circ} - 120^{\circ} = 60^{\circ}$. Тогда по теореме косинусов получаем:

$$d = \sqrt{6^2 + 16^2 - 2 \cdot 6 \cdot 16 \cdot \cos 60^\circ} = \sqrt{36 + 256 - 2 \cdot 6 \cdot 16 \cdot \frac{1}{2}} = \sqrt{196} = 14.$$

Ответ:4) 14.

8. Художественная и научно-популярная литература составляют 21+15=36 (%), а учебники и учебные пособия -100-(7+15+21)=57 (%). Таким образом, имеем пропорцию $\frac{36}{396}=\frac{57}{r}$, откуда $x=\frac{396\cdot57}{36}=627$.

Ответ: 1) 627.

9. Площадь полной поверхности куба вычисляется по формуле $S=6a^2$, а диагональ — $d=a\sqrt{3}$, где a — длина ребра куба. Из первой формулы имеем: $6a^2=18$, т.е. $a=\sqrt{3}$. Тогла $d=\sqrt{3}\cdot\sqrt{3}=3$.

Ответ: 4) 3.

10.
$$\frac{4x^{2}-1}{x^{2}-3x+2} > 1-2x \Leftrightarrow \frac{4x^{2}-1+(2x-1)(x^{2}-3x+2)}{x^{2}-3x+2} > 0 \Leftrightarrow \frac{(2x-1)(x^{2}-3x+2+2x+1)}{(x-1)(x-2)} > 0 \Leftrightarrow \frac{(2x-1)(x^{2}-x+3)}{(x-1)(x-2)} > 0 \Leftrightarrow \frac{2x-1}{(x-1)(x-2)} > 0.$$

Отсюда методом интервалов получаем: $x \in (\frac{1}{2};1) \cup (2;+\infty)$.

Ответ: 4) $(1/2; 1) \cup (2; +\infty)$.

11. Имеем $2-3\sin 2x = 3\sin x - 4\cos x$; $2-6\sin x\cos x = 3\sin x - 4\cos x$;

 $2+4\cos x = 6\sin x \cos x + 3\sin x$; $2(1+2\cos x) = 3\sin x(2\cos x + 1)$;

$$(2\cos x + 1)(2 - 3\sin x) = 0; \cos x = -\frac{1}{2}; \sin x = \frac{2}{3};$$
 на промежутке $\left[-\frac{\pi}{3}; 2\pi \right]$

оба уравнения имеют по два корня

Ответ: 4) 4.

12. Стоимость поездки на машине первой фирмы составит $250+50\cdot11=800$ (руб.), второй – $200 + (50 - 10) \cdot 16 = 840$ (руб.), третьей – $180 + 300 + (50 - 15) \cdot 13 = 935$ (руб.). Таким образом, самый дешевый заказ будет в первой фирме. Его стоимость – 840 руб.

Ответ: 1) 840 руб.

13. Поскольку уравнения системы не меняются при перестановке неизвестных, то система относится к специальному классу симметрических. Один из способов решения таких сис-

тем состоит в использовании стандартной замены переменных вида $\begin{cases} u = \sqrt{x} + \sqrt{y}, \\ v = \sqrt{x} \cdot \sqrt{y}. \end{cases}$

скольку $x^2+y^2=\left(\left(\sqrt{x}+\sqrt{y}\right)^2-2\sqrt{x}\cdot\sqrt{y}\right)^2-2xy$, то система в результате такой замены примет вид $\begin{cases} \sqrt{\left(u^2-2v\right)^2-2v^2}+\sqrt{2}v=8\sqrt{2}, \\ u=4. \end{cases}$ Используя второе уравнение, первое перепи-

шем в виде $\sqrt{(16-2v)^2-2v^2}=8\sqrt{2}-\sqrt{2}v$ или, после возведения обеих его частей в квадрат (при условии $v \le 8$) $256 - 64v + 2v^2 = 128 - 32v + 2v^2$. Отсюда v = 4. В итоге, возвраща-

ясь к исходным переменных, получаем систему $\begin{cases} \sqrt{x} + \sqrt{y} = 4, \\ \sqrt{x} \cdot \sqrt{y} = 4. \end{cases}$ На основании обратной теоремы Виета величины \sqrt{x} и \sqrt{y} являются корнями квадратного уравнения

 $t^2 - 4t + 4 = 0$, т.е. $\sqrt{x} = \sqrt{y} = 2$ и, значит, x = y = 4. Следовательно, x + y = 8.

Ответ: 3) 8.

14. Вводя новую переменную $t = 2^x > 0$, получим иррациональное неравенство

$$\sqrt{t-7} > 9-t$$
 , равносильное следующей совокупности
$$\begin{cases} t > 9, \\ t \geq 7, \\ t \leq 9, \\ t-7 > (9-t)^2. \end{cases}$$
 Решая квадратное

неравенство, получаем: $t^2 - 19t + 88 < 0$, откуда $t \in (8;11)$. Следовательно, решением совокупности будет t > 8 или, возвращаясь к исходной переменной, $2^x > 8$, откуда $x \in (3:+\infty)$. Ответ: 4) $(3:+\infty)$.

15. Преобразуем правую часть уравнения:

$$x(1-\lg 5) = x(\lg 10-\lg 5) = x\lg 2 = \lg 2^x$$
. Тогда $2^x + x - 41 = 2^x$, $x - 41 = 0$, $x = 41$.

Ответ: 2) 41.

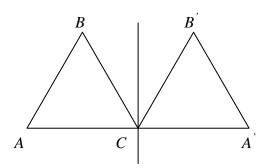
Вариант 17

Решения экзаменационных заданий

1. Всего было 121 дыня. 22 дыни отданы в уплату налога на оставшиеся 121-22=99 дынь. Поэтому налог составил 2 дыни за 9 дынь. Налог с 41 дыни Ходжи Насреддина составил бы $\frac{41}{9} \cdot 2 = 9\frac{1}{9}$. Следовательно, $\frac{1}{9}$ дыни стоит 1 таньга, то есть дыня стоит 9 таньга.

Ответ: 9 таньга.

2. Объем полученного тела вращения можно (см. рисунок осевого сечения) найти как разность объема усеченного конуса, окружности оснований которого образованы вращением точек A и B, и объема конуса с вершиной в точке C, окружность основания которого образована вращением точки B.



3. Перепишем систему в виде $\begin{cases} 3^{x+2y} + 2 \cdot 3^{3y} \le 6, \\ x + 5y \ge \log_3 \frac{9}{2}. \end{cases}$ После этого первое неравенство умножим

Ответ: 576π.

на 3^{3y} , а второе спотенцируем. Получим: $\begin{cases} 3^{x+5y} + 2 \cdot 3^{6y} \le 6 \cdot 3^{3y}, \\ 3^{x+5y} \ge \frac{9}{2}. \end{cases}$ Теперь, используя второе

неравенство, для первого получим неравенство-следствие $\frac{9}{2} + 2 \cdot 3^{6y} \le 3^{x+5y} + 2 \cdot 3^{6y} \le 6 \cdot 3^{3y}$, откуда следует, что y должен удовлетворять неравенству $2 \cdot 3^{6y} + \frac{9}{2} \le 6 \cdot 3^{3y}$ или $\frac{1}{2}(2 \cdot 3^{3y} - 3)^2 \le 0$. Отсюда получаем единственное значение y, удовлетворяющее неравенству-следствию: $2 \cdot 3^{3y} - 3 = 0 \iff 3^{3y} = \frac{3}{2}$ $y = \frac{1}{3} - \frac{1}{3}\log_3 2$. При этом значении y первое неравенство исходной системы примет вид $3^{x+\frac{2}{3}-\frac{2}{3}\log_3 2-1} + 2 \cdot \frac{3}{2} \cdot \frac{1}{3} \le 2$ или $3^{x-\frac{1}{3}-\frac{2}{3}\log_3 2} \le 1$, т.е. $x \le \frac{1}{3} + \frac{2}{3}\log_3 2$. В то же время из второго неравенства исходной системы получаем:

 $x + \frac{5}{3} - \frac{5}{3}\log_3 2 \ge 2 - \log_3 2$ или $x \ge \frac{1}{3} + \frac{2}{3}\log_3 2$. Таким образом, $x = \frac{1}{3} + \frac{2}{3}\log_3 2$. Проверкой убеждаемся, что найденные значения являются решениями.

Otbet:
$$\begin{cases} x = \frac{1}{3} + \frac{2}{3}\log_3 2 \\ y = \frac{1}{3} - \frac{1}{3}\log_3 2 \end{cases}$$

4. Учитывая, что левая часть уравнения есть сумма двух квадратов, дополним ее до квадрата суммы, добавив и вычтя соответствующие удвоенные произведения: $\left(\frac{x}{x-1} + \frac{x}{x+1}\right)^2 - 2 \cdot \frac{x}{x-1} \cdot \frac{x}{x+1} - \frac{45}{16} = 0$. Приводя в скобках подобные, приведем уравнение к виду $\left(\frac{2x^2}{x^2-1}\right)^2 - \frac{2x^2}{x^2-1} - \frac{45}{16} = 0$. Таким образом, получили квадратное уравнение относи-

тельно
$$t = \frac{2x^2}{x^2 - 1}$$
. Решая его получаем: $\frac{2x^2}{x^2 - 1} = \frac{1 \pm \sqrt{1 + \frac{45}{4}}}{2} = \frac{1 \pm \frac{7}{2}}{2}$, т.е., либо $\frac{2x^2}{x^2 - 1} = \frac{9}{4}$ и

тогда
$$x=\pm 3$$
, либо $\frac{2x^2}{x^2-1}=-\frac{5}{4}$ и тогда $x=\pm\sqrt{\frac{5}{13}}$.

Otbet:
$$\pm 3$$
; $\pm \sqrt{\frac{5}{13}}$.

Вариант 18 (Решения тестовых заданий)

1. 100 л бензина стоят $100 \cdot 34.5 = 3450$ (руб.). Поэтому водитель получит 5000 - 3450 = 1550 (руб.) сдачи.

Ответ: 2) 1550.

2.
$$(-4):(-1^4)\cdot(-1)^2:(-2)+7\cdot(-1^2)=(-4):(-1)\cdot1:(-2)+7\cdot(-1)=-2-7=-9$$
.

Ответ: 5) - 9.

3. При условии $x \le 0$ (модуль есть величина неотрицательная) возведем обе части уравнения в квадрат (этим самым «убъем» модуль), затем перенесем все в левую часть и воспользуемся формулой разности квадратов:

$$(4x-1)^2 - (-8x)^2 = 0 \Leftrightarrow (-4x-1)(12x-1) = 0.$$

Отсюда x = -0.25 или $x = \frac{1}{12}$. Подходит только отрицательный корень, который будет единственным.

Ответ: 3) -0.25.

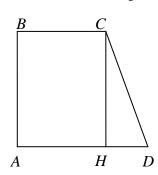
- 4. Во время распродажи при скидке 15% флакон герметика будет стоить $180 \cdot 0.85 = 153$ (руб.). Следовательно, на 1000 руб. можно будет купить 1000 : 153 = 6.5..., т.е. 6 флаконов. Ответ: 3) 6.
- 5. Из данной формулы получим: в минуту Павел делает $n = 140 \cdot 0.8 = 112$ шагов. Следовательно, его скорость составит $112 \cdot 0.8 = 89.6$ (м/мин).

Ответ: 4) 89.6.

6. Осуществим перевод заданных в условии единиц в нужные. В итоге получим: $v = \frac{1200 \cdot 1000 \ (\textit{м})}{3600 \ (\textit{сек})} = \frac{1000}{3} = 333 \ \frac{1}{3} \left(\frac{\textit{м}}{\textit{сек}}\right).$

OTBET: 5) $333\frac{1}{3}$.

7. Опустим высоту из вершины C. Так как трапеция прямоугольная, то CH = AB = 40. Теперь по теореме Пифагора из ΔCHD находим: $HD = \sqrt{CD^2 - CH^2} = \sqrt{41^2 - 40^2} = 9 \ . \qquad \text{Тогда}$ $S_{ABCD} = \frac{BC + AD}{2} \cdot CH = \frac{BC + AH + HD}{2} \cdot CH = \frac{15 + 15 + 9}{2} \cdot 40 = 780 \ .$



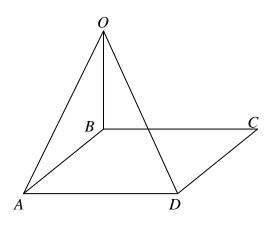
Ответ: 2) 780.

8. Методические пособия и научно-популярная литература составляют 7+15=22 (%), а вся литература вместе -100%. Таким образом, имеем пропорцию $\frac{22}{198} = \frac{100}{x}$, откуда 198.100

 $x = \frac{198 \cdot 100}{22} = 900.$

Ответ: 2) 900.

9. Так как OB — перпендикуляр к плоскости квадрата, то $\triangle OBA$ прямоугольный и по теореме Пифагора имеем: $OA = \sqrt{OB^2 + AB^2} = \sqrt{3^2 + 4^2} = 5$ и, поскольку по теореме о трех перпендикулярах $OA \perp AD$, $S_{OAD} = \frac{1}{2}OA \cdot AD = \frac{4 \cdot 5}{2} = 10$.



Ответ: 5) 10.

10. Выполним эквивалентные преобразования

$$\frac{25}{x^2 - 4x} \ge x^2 - 4x \Leftrightarrow \frac{25 - \left(x^2 - 4x\right)^2}{x^2 - 4x} \ge 0 \Leftrightarrow \frac{\left(x^2 - 4x - 5\right)\left(x^2 - 4x + 5\right)}{x\left(x - 4\right)} \le 0 \Leftrightarrow \frac{\left(x + 1\right)\left(x - 5\right)}{x\left(x - 4\right)} \le 0.$$

Отсюда методом интервалов получаем: $x \in [-1;0) \cup (4;5]$.

Ответ: 4)
$$[-1;0) \cup (4;5]$$
.

11. Выполним цепочку эквивалентных преобразований: $2-\sin 2x-2\cos^2 x=0 \Leftrightarrow 2\sin^2 x-2\sin x\cos x=0 \Leftrightarrow 2\sin x(\sin x-\cos x)=0$. Отсюда имеем два случая: а) $\sin x=0$, откуда $x=\pi k,\ k\in Z$ и, учитывая ограничение, $x_1=-\pi,\ x_2=-2\pi$; б) $\sin x-\cos x=0 \Leftrightarrow \operatorname{tg} x=1$, т.е. $x=\frac{\pi}{4}+\pi n,\ n\in Z$ и $x_3=-\frac{7\pi}{4}$. Таким образом, $S=-\pi-2\pi-\frac{7\pi}{4}=-\frac{19\pi}{4}$.

Ответ: 4)
$$-\frac{19\pi}{4}$$
.

12. Стоимость покупки у первого поставщика составит $2600 \cdot 70 + 10000 = 192000$ (руб.), у второго $-2800 \cdot 70 + 0 = 196000$ (руб.), у третьего $-2700 \cdot 70 + 8000 = 197000$ (руб.). Таким образом, самый дешевый заказ будет у первого поставщика. Его стоимость -192000 руб. Ответ: 2) 192000.

13. Из первого уравнения следует, что $x \ge y$ (так как левая часть неотрицательна). Из второго уравнения следует, что $x \ne y$. Тогда $\sqrt{x^2 - xy} = \sqrt{x}\sqrt{x - y}$, $\sqrt{xy - y^2} = \sqrt{y}\sqrt{x - y}$, $x - y = \left(\sqrt{x - y}\right)^2$. Поэтому после сокращения первого уравнения системы на $\sqrt{x - y}$ перепишем его в виде $\sqrt{x} + \sqrt{y} = 3\sqrt{x - y}$, откуда, в свою очередь, после деления на $\sqrt{x} \ne 0$ получаем $\left(t = \sqrt{\frac{y}{x}}\right)$: $1 + t = 3\sqrt{1 - t^2}$ или (сокращаем обе части на $\sqrt{1 + t} \ne 0$) $\sqrt{1 + t} = 3\sqrt{1 - t}$. Следовательно, $t = \frac{4}{5}$ и, значит, $\frac{y}{x} = \frac{16}{25}$, т.е. $y = \frac{16}{25}x$. Под-

ставляя найденное выражение во второе уравнение исходной системы и учитывая положительность x, находим: $x = \frac{25}{3}$. Тогда $y = \frac{16}{3}$ и $x + y = \frac{41}{3}$.

Ответ: 3) $\frac{41}{3}$.

14. Вводя новую переменную $t=2^x>0$, получим иррациональное неравенство $\sqrt{4t^2+17}>5-t$, равносильное следующей совокупности $\begin{bmatrix} t>5,\\ t\le 5,\end{bmatrix}$ Решая квад- $4t^2+17>(5-t)^2.$

ратное неравенство, получаем: $3t^2 + 10t - 8 > 0$, откуда для системы (t > 0) $t \in \left(\frac{2}{3}; 5\right]$. Следовательно, решением совокупности будет $t > \frac{2}{3}$ или, возвращаясь к исходной переменной, $2^x > \frac{2}{3}$, откуда $x \in (1 - \log_2 3 : +\infty)$

OTBET: 4) $(1 - \log_{3} 3 : + \infty)$.

15. Имеем
$$\log_3(2^x - 1) \cdot \log_3 \frac{2}{6(2^x - 1)} = -2$$
,

$$\log_3^2(2^{\mathcal{X}}-1) + \log_3(2^{\mathcal{X}}-1) - 2 = 0$$
, $\log_3(2^{\mathcal{X}}-1) = 1$ или $\log_3(2^{\mathcal{X}}-1) = -2$,

$$2^x = 4$$
, $x = 2$ или $2^x = \frac{10}{9}$, $x = \log_2 \frac{10}{9}$. Больший корень: $x = 2$, всего 2 корня.

Ответ: 2) 4.

Вариант 18

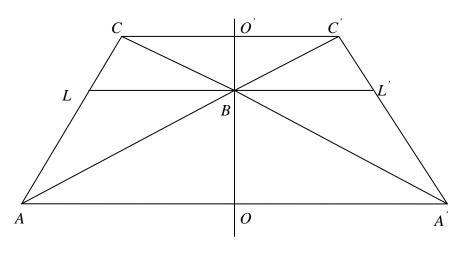
Решения экзаменационных заданий

1. Машина сэкономила 10 мин., которые должны были уйти на её путь от места встречи с инженером до станции и обратно до места встречи. То есть, чтобы доехать от места встречи с инженером до станции к установленному времени машине нужно 5 мин. Значит, инженер это же расстояние прошёл пешком за 55 - 5 = 50(мин.). Следовательно, скорость машины больше скорости инженера в 50 : 5 = 10 (раз).

Ответ: 10.

2. Пусть ABC – заданный треугольник:

BC = 2, $\angle ABC = 60^{\circ}$, LL' - 6 биссектриса $\angle ABC$, OO' - 6 ось вращения. Тогда объем тела вращения (на рисунке изображено его осевое сечение) можно вычислить как разность между объемом усеченного конуса с



радиусами оснований OA и O'C и суммой объемов конусов, осевые сечения которых — треугольники CBC' и ABA'. При этом AB=2BC=4 (так как $\angle CAB=30^\circ$). Аналогично получаем: $BO=\frac{1}{2}AB=2$, $BO'=\frac{1}{2}BC=1$, $AO=2\sqrt{3}$, $CO'=\sqrt{3}$. Далее вычисления по соответствующим формулам объемов дают: $V=12\pi$.

Ответ: 12π.

3. Умножим первое неравенство на 11^{3x+4} , а второе спотенцируем. Получим: $\begin{cases} \left(11^{3x+4}\right)^2 + 3 \cdot 11^{5x-3y+3} - 2 \cdot 11^{3x+4} \leq 0, \\ 11^{5x-3y+3} \geq \frac{1}{3}. \end{cases}$ Теперь, используя второе неравенство, для первого по-

лучим неравенство-следствие $(11^{3x+4})^2+3\cdot\frac{1}{3}-2\cdot11^{3x+4}\leq (11^{3x+4})^2+3\cdot11^{5x-3y+3}-2\cdot11^{3x+4}$, откуда следует, что x должен удовлетворять неравенству $(11^{3x+4}-1)^2\leq 0$. Отсюда получаем единственное значение x, удовлетворяющее неравенству-следствию: $11^{3x+4}-1=0 \Leftrightarrow 11^{3x+4}=1 \quad x=-\frac{4}{3}$. При этом значении x первое неравенство исходной системы примет вид $1+3\cdot11^{\frac{8}{3}-3y-1}-2\leq 0$ или $11^{-3y\frac{-11}{3}}\leq \frac{1}{3}$, т.е. $y\geq \frac{1}{3}\log_{11}3-\frac{11}{9}$. В то же время из второго неравенства исходной системы получаем: $-\frac{20}{3}-3y+3\geq -\log_{11}3$ или $y\leq \frac{1}{3}\log_{11}3-\frac{11}{9}$. Таким образом, $y=\frac{1}{3}\log_{11}3-\frac{11}{9}$. Проверкой убеждаемся, что найденные значения являются решениями.

Otbet:
$$x = -\frac{4}{3}$$
; $y = \frac{1}{3} \cdot \log_{11} 3 - 1\frac{2}{9}$.

4. Перепишем уравнение в виде $\frac{x^2}{2x^2-1}+7x+6(2x^2-1)=0$ или, освобождаясь от знаменателя, $x^2+7x(2x^2-1)+6(2x^2-1)^2=0$. Таким образом, получаем однородное относительно переменных x и $2x^2-1$ уравнение второй степени. Дальнейшее решение можно провести, например, так: делим почленно уравнение на $(2x^2-1)^2$ и вводим новую переменную по формуле $t=\frac{x}{2x^2-1}$. Получим квадратное уравнение $t^2+7t+6=0$, откуда t=-1 или t=-6. В первом случае, возвращаясь к исходной переменной, имеем:

$$\frac{x}{2x^2 - 1} = -1 \iff 2x^2 + x - 1 = 0 \implies x_1 = -1, \quad x_2 = \frac{1}{2}, \text{ а во втором}$$

$$\frac{x}{2x^2 - 1} = -6 \iff 12x^2 + x - 6 = 0 \implies x_3 = \frac{2}{3}, \quad x_2 = -\frac{3}{4}.$$
Ответ: $-1, \frac{1}{2}, \frac{2}{3}, -\frac{3}{4}.$