
СОРОК СЕДЬМОЙ ТУРНИР ГОРОДОВ, ОСЕННИЙ ТУР
Предварительные решения базового варианта

8 – 9 классы

1 (4 балла). В классе каждый ребёнок говорит правду только в определённые дни недели,
причём никто не говорит правду два дня подряд. Первого, второго, третьего и четвёрто-
го апреля у каждого ребёнка в классе спросили, будет ли он завтра говорить правду. Пер-
вого апреля «да» ответили все дети в классе, второго — половина, третьего — треть.
Какая часть класса сказала правду четвёртого апреля?

(Георгий Караваев)
Ответ: 1

6
. Заметим, что 1 апреля все солгали (так как никто не говорит правду два

дня подряд). Значит, и 2 апреля все солгали. Половина из них ответила «нет», все они
3 апреля сказали правду, поэтому 4 апреля они лгали, а 3 апреля тоже сказали «нет».
Вторая половина ответила «да», все они 3 апреля лгали, но треть из них (1

6
от общего

числа) 3 апреля сказали «нет», поэтому 4 апреля они сказали правду. Остальные 3 апреля
сказали «да», то есть 4 апреля они лгали.

2 (4 балла). Дорога от пункта A до пункта B идёт сначала по шоссе, а потом по
тропинке. Петя и Вася одновременно вышли навстречу друг другу из пунктов A и B
соответственно и встретились на шоссе. На следующий день они снова одновременно
вышли навстречу друг другу, но теперь Петя — из B, а Вася — из A, и снова встретились
на шоссе, но в 6 км от места вчерашней встречи. Известно, что Петя и Вася ходят по
шоссе каждый со своей постоянной скоростью, причём Петя — в 1,5 раза быстрее Васи,
а на тропинке их скорости снижаются в одно и то же число раз. На каком расстоянии
от A они встретились в первый день?

(Людмила Смирнова)
Ответ: 18 км.
Решение 1. Построим вместо тропинки шоссе и удлиним его так, чтобы время прохож-

дения этого участка было тем же самым. Теперь можно считать, что Петя и Вася оба дня
шли навстречу друг другу по одному шоссе. Разобьём его на пять равных частей, тогда
Петя оба дня проходил три части, а Вася – две. Значит, расстояние между местами их
встречи составляет одну часть, то есть длина каждой части равна 6 км, а Петя в первый
день прошел 18 км.

Решение 2. Пусть первая встреча ребят состоялась в точке M , а вторая — в точке N ,
тогдаMN = 6. Поскольку Вася идет в 1,5 раза медленнее Пети, Петя на второй день дойдёт
до точкиM в 1,5 раза быстрее, чем Вася в первый день. Пусть Вася в этот момент находится
в точке K. Пройденный Васей к этому моменту путь AK составляет тогда 1 : (1, 5 ·1, 5) = 4

9

пути Пети в первый день, то есть AK = 4
9
AM . За оставшееся до встречи время Петя

прошёл расстояние MN , а Вася — расстояние KN = MN : 1, 5 = 4 (км). Таким образом,
KN +NM = 4 + 6 = 10 = AM − AK = 5

9
AM , откуда AM = 10 · 9 : 5 = 18 (км).

3 (5 баллов). Клетчатая прямоугольная доска покрыта доминошками 1× 2 в два слоя
(каждая половинка доминошки расположена над одной клеткой доски). Назовём доминош-
ку верхнего слоя особой, если её половинки лежат на двух доминошках разных направле-
ний. Обязательно ли количество особых доминошек чётно?

(Татьяна Казицына, Борис Френкин)
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Ответ: обязательно.
Решение 1. Окрасим горизонтальные доминошки нижнего слоя в белый цвет, а верти-

кальные – в чёрный. Клетки доминошек верхнего слоя окрасим в цвета клеток под ними.
Особые доминошки и только они будут двухцветными. Общее число белых клеток верхнего
слоя чётно (их в два раза больше, чем горизонтальных доминошек в нижнем слое). Зна-
чит, и количество белых клеток на двухцветных доминошках чётно, а это и есть количество
особых доминошек.

Решение 2. Заметим, что от любого разбиения доски на доминошки можно перейти к
любому другому последовательностью замен такого вида (будем называть их флипами):
находим две доминошки, образующие квадрат 2 × 2 и у обеих меняем направление (см.,
например, статью Е. Карпова и К. Кохася «Разбиения на домино и функции высоты» в
«Кванте» №6 за 2010 год.). В случае, когда оба слоя, покрывающие доску, одинаковы, зада-
ча очевидна — особых доминошек нет, то есть их 0 — чётное число. Осталось проверить, что
после любого флипа в нижнем слое количество особых доминошек не меняется. Заметим,
что если доминошка целиком лежит на рассматриваемом квадрате 2 × 2, то она неособая
и останется таковой после флипа. Если же доминошка залезает на такой квадрат одной
клеткой, то после флипа её статус меняется — особая становится неособой, и наоборот. Но
таких залезающих доминошек либо четыре, либо две, либо ни одной, поэтому чётность
числа особых доминошек при флипе не меняется.

4 (5 баллов). Каждое число натурального ряда барон Мюнхгаузен покрасил в синий,
красный либо белый цвет (все цвета присутствуют). Он утверждает, что сумма любых
99 красных слагаемых — синяя, а сумма любых 99 синих слагаемых — красная (слагаемые
в каждой сумме не обязательно различны). Могут ли слова барона быть правдой?

(Михаил Евдокимов)
Ответ: могут. Например, если красные — это все числа, дающие остаток 1 при делении

на 100, синие — все числа, дающие остаток −1 при делении на 100, а белые — все остальные.
Замечание. Можно взять любой делитель k числа 100, больший 2, и сделать красными

все числа, сравнимые с 1 по модулю k, синими — все числа, сравнимые с −1 по модулю k,
а белыми — все остальные. Так как сумма 100 чисел, сравнимых с 1 по модулю k, делится
на k, то сумма 99 таких чисел будет сравнима с −1 по модулю k, то есть, сумма любых 99
красных чисел синяя (аналогично, сумма любых 99 синих чисел красная).

5 (6 баллов). Существует ли такой острый угол α, что некоторый прямоугольник
можно разрезать на равнобокие трапеции, у каждой из которых есть угол α?

(Егор Бакаев)
Ответ: нет. Предположим противное. Ясно, что 90◦/α — целое число (так как в вершине

прямоугольника сходится несколько острых углов). Рассмотрим все точки, в которых схо-
дятся углы нескольких трапеций.

Сумма углов, сходящихся во внутренних точках, равна 360◦. Четыре и больше тупых
углов в такой точке сходиться не может — тогда они не больше 90◦, то есть не тупые.

Трёх тупых углов в такой точке тоже быть не может: ведь тогда либо там нет острых, и
каждый тупой равен 120◦, а острый равен 60◦, что невозможно (90◦/60◦ — не целое число),
либо есть острые, но один острый плюс один тупой равен 180◦, и в «оставшихся» 180◦ не
более одного тупого угла, противоречие.
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Если тупых углов два, то и острых два, ведь тупой и острый дают в сумме 180◦.
Возможен случай, и когда тупых углов не больше одного — если точка внутри стороны

одной из трапеций, острых углов там тогда не меньше одного. То же происходит в точках,
лежащих на границе прямоугольника, но не в его вершинах.

Наконец, в вершинах прямоугольника сходятся только острые углы.
Следовательно, во всех трапециях вместе число тупых углов меньше числа острых. Но

в каждой трапеции число тупых углов равно числу острых. Противоречие.
Замечание. Оказывается, разрезать на равнобедренные трапеции (без требования ра-

венства их острых углов) можно любой многоугольник — см., например, решение задачи
67346 на сайте problems.ru или решение задачи № 13 заочного тура Двадцатой олимпиады
по геометрии им. И.Ф.Шарыгина на сайте geometry.ru (автор задачи Алексей Заславский).

10 – 11 классы

1. В ряд слева направо стоят коробки с номерами 1, 2, 3, . . .В них по очереди кладут
числа 1, 2, . . . , 2025. В каждой коробке каждые два числа должны быть взаимно просты.
Очередное число кладётся в самую левую из разрешённых коробок. Все числа разложили.
а) (2 балла) Сколько чисел попало во вторую коробку?
б) (2 балла) Сколько чисел попало в третью коробку?

(Александр Шаповалов)
Ответы: а) 14 чисел; б) 7 чисел.
В первую коробку, очевидно, попадёт единица и все простые числа, меньшие 2025, а

составные числа туда попасть не могут.
Во вторую коробку не может попасть число, делящееся на два различных простых, так

как квадрат меньшего из этих простых попал бы сюда раньше. Поэтому в эту коробку
попадут в точности квадраты простых чисел, не превышающие 2025 = 452. Это числа
22, 32, 52, . . . , 432. Их 14.

В третью коробку попадут следующие попарные произведения последовательных про-
стых чисел: 2 · 3, 5 · 7, 11 · 13, 17 · 19, 23 · 29, 31 · 37, 41 · 43. Докажем это. Число 6 туда
попадает, пусть там уже лежат числа p1p2, p3p4, . . . , p2k−1p2k, и следующим туда попадает
число A.

В разложении A участвуют простые числа, не меньшие p2k+1. Число p22k+1 попадёт во
вторую коробку, так что A равно либо p32k+1, либо p2k+1p2k+2. Заметим, что для простых
чисел, меньших 50, p32k+1 > p2k+1p2k+2. Действительно, это неравенство равносильно нера-
венству p22k+1 > p2k+2, но 52 > 7, а 72 уже больше даже 47. Поэтому A = p2k+1p2k+2.

Замечание. На самом деле неравенство p2n > pn+1 верно всегда, что следует из известного
постулата Бертрана: 2pn > pn+1.

2 (4 балла). В выпуклом пятиугольнике ABCDE равны стороны AE, BC и DE, а так-
же равны углы A, B, C и D. Докажите, что точки A, B, C, D и E лежат на одной
окружности.

(Михаил Евдокимов)
Из равенств ∠A = ∠B и AE = BC следует, что EABC — равнобедренная трапеция.

Значит, точки E, A, B и C лежат на одной окружности. Аналогично точки E, D, C и B
лежат на одной окружности. Так как эти две окружности имеют три общие точки E, B
и C, это одна и та же окружность.
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3 (5 баллов). По кругу стоят 30 мальчиков и 30 девочек. Докажите, что можно
выбрать 10 мальчиков и 10 девочек так, чтобы никакие двое из выбранных не стояли
рядом.

(Александр Грибалко)
Решение 1. Выберем произвольно первого ребенка. Двигаясь от него по часовой стрелке,

будем выбирать каждого второго и объявлять негодными пропущенных, пока не наберётся
10 детей одного пола. Пусть в этот момент выбрано, например, 10 мальчиков и k < 10
девочек. Объявим негодным следующего по кругу. Остались не рассмотренными не менее
30 − k − (10 + k) = 20 − 2k девочек. Выберем 10 − k (не более половины) из следующих
девочек, начиная с первой из них и беря их через одну, не обращая внимания на мальчиков.

Решение 2. Будем доказывать индукцией по n, что среди 3n мальчиков и 3n девочек,
стоящих по кругу, можно выбрать n мальчиков и n девочек, среди которых никто не стоит
рядом друг с другом. База n = 1 очевидна.

Пусть утверждение доказано для n− 1, докажем его для n. Рассмотрим все возможные
шестёрки подряд стоящих детей. Заметим, что не может во всех шестёрках быть больше
мальчиков (так как, просуммировав по всем шестёркам, получили бы, что и всего маль-
чиков больше). Аналогично не может во всех шестёрках быть больше девочек. Поэтому
найдётся шестёрка, где девочек не меньше половины, и аналогично найдётся шестёрка, где
мальчиков не меньше половины. Двигаясь от первой из них ко второй по кругу, мы найдём
шестёрку, где ровно 3 мальчика и 3 девочки. Заметим, что среди оставшихся детей (вне
выбранной шестёрки) можно найти n− 1 мальчиков и n− 1 девочек, не стоящих рядом (по
предположению индукции), выберем их.

Теперь рассмотрим в выделенной шестёрке четверых детей, не стоящих с краю. Среди
них найдутся два ребёнка разного пола, не стоящие рядом (возьмём двух крайних детей, а
если они одного пола, то среди двух детей, стоящих посередине, возьмём ребёнка другого
пола и добавим к нему крайнего ребёнка, не стоящего рядом). Добавим этих двоих детей
к уже выбранным, получим искомое.

Решение 3. Занумеруем детей по часовой стрелке числами 1, 2, 3, . . . , 60 и разделим
на три группы: первая — номера которых имеют остаток 1 от деления на 3, вторая —
номера которых имеют остаток 2 от деления на 3, третья — номера которых делятся на 3.
В каждой группе 20 человек, и если хотя бы в одной группе мальчиков и девочек поровну, то
задача решена — надо просто выбрать эту группу. Иначе найдутся две «соседние» группы,
в одной из которых больше мальчиков, а в другой — больше девочек. Пусть это первая
и вторая группы. Будем постепенно заменять в первой группе людей одного за другим
на людей из второй группы: №1 на №2, потом №4 на №5, потом №7 на №8, и т. д. При
каждой замене число мальчиков в изменяемой первой группе меняется не более чем на 1.
Так как изначально их было больше половины, а после полной замены исходной первой
группы на вторую мальчиков станет меньше половины, в какой-то промежуточный момент
мы получим искомую группу, в которой мальчиков и девочек поровну.

Решение 4. Докажем, что можно выбрать даже 14 девочек и 14 мальчиков. Шаблоном
назовем 28 мест «через 1», то есть набор мест вида m, m + 2, m + 4, . . . , m + 54. Шаблон
назовём «Д», если в нём больше девочек, и «М» — если в нём больше мальчиков.

Если нет шаблона, в котором мальчиков и девочек поровну, то должны существовать и
«М»-шаблон, и «Д»-шаблон (иначе, суммируя (усредняя) по всем шаблонам, получили бы,
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что всего в круге больше мальчиков или больше девочек). Тогда найдутся два «соседних»
шаблона разного типа — скажем, «М»-шаблон n, n + 2, n + 4, . . . , n + 54 и «Д»-шаблон
n+1, n+3, n+5, . . . , n+55. Далее двигаемся от одного шаблона к другому, каждым ходом
заменяя одного человека среди текущих 28: а именно, сначала сдвинем n + 54 в n + 55,
затем n+52 в n+53 и т. д. В промежутках у нас будут получаться уже не шаблоны, но по-
прежнему 28 человек, не стоящие рядом. После каждого хода число девочек в выбранных
28 ребятах изменяется не более чем на 1. Значит, в какой-то момент мы получим набор
из 28 человек, в котором мальчиков и девочек поровну (так как изначально было больше
мальчиков, а в конце больше девочек).

4 (5 баллов). Петя и Вася подошли к доске, и Петя нарисовал на ней несколько окруж-
ностей с различными центрами, покрасив каждый центр красным или синим цветом.
Оказалось, что если какие-то две окружности касаются друг друга, то обязательно
внешним образом, причём их центры — разного цвета. Всегда ли Вася может заменить
каждую окружность на новую с тем же центром так, чтобы выполнялось условие: ес-
ли касались друг друга две старые окружности, то соответствующие им новые тоже
касаются, но уже внутренним образом?

(Михаил Святловский)
Ответ: всегда. Пусть R1, . . . , Rm — радиусы «красных» окружностей, а r1, . . . , rn —

радиусы «синих». Возьмём R > max(r1, . . . , rn) и заменим окружности с радиусами Ri на
окружности с радиусами R+Ri, а окружности с радиусами rj на окружности с радиусами
R − rj. Если старые окружности с радиусами Ri и rj касались, то Ri + rj = dij (где dij
— расстояние между их центрами). Для соответствующих новых окружностей получим
(R +Ri)− (R− ri) = dij, то есть они касаются внутренним образом.

Наглядно это можно представить себе так: мы равномерно раздуваем все красные окруж-
ности и одновременно сдуваем синие (с той же скоростью), причём когда какая-то синяя
окружность «схлопывается» в точку, далее она снова начинает расти (с той же скоростью).
При этом все касания всё время сохраняются, а в моменты схлопываний внешние касания
заменяются на внутренние.

Замечание. Хотя этого и не требовалось, можно добиться того, чтобы ещё и никаких
новых касаний не появилось (между красными и синими окружностями новые касания не
возникнут, а если вдруг коснутся между собой синие окружности (или же красные), то это
будут внешние касания, и их можно избежать, ещё увеличив R).

5. Таблица n× n заполнена целыми числами от 0 до n так, что и в каждой строке, и
в каждом столбце все числа различны. Назовём клетку таблицы удачной, если в объеди-
нении её строки и её столбца встречаются все числа от 0 до n.
а) (3 балла) Каково наибольшее возможное количество удачных клеток?
б) (3 балла) Докажите, что количество удачных клеток чётно.

(Александр Грибалко)
а) Ответ: n2 − n.
Оценка 1. Докажем, что в каждой строке есть неудачная клетка. Предположим, что в

некоторой строке отсутствует какое-то число a из набора 0, 1, 2 . . . , n, а все клетки в ней
удачные. Тогда в каждом столбце есть число a. Таким образом, в n − 1 строках число a
встречается n раз, а значит, в какой-то строке оно записано более одного раза, что проти-
воречит условию. Следовательно, удачных клеток не больше n2 − n.
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Оценка 2. Заметим, что в каждом ряду отсутствует ровно одно из разрешённых чисел,
а остальные встречаются по одному разу. Очевидно, клетка неудачна тогда и только тогда,
когда она лежит на пересечении строки и столбца, в которых отсутствует одно и то же
число. Пусть число i отсутствует ровно в ki строках. Тогда в таблице n−ki чисел i, поэтому
оно отсутствует ровно в ki столбцах. Следовательно, количество неудачных клеток равно
k20 + k21 + . . .+ k2n.

Заметим, что k0 + k1 + . . .+ kn = n. Значит,

k20 + k21 + . . .+ k2n − n = k0(k0 − 1) + k1(k1 − 1) + . . .+ kn(kn − 1) > 0

(каждое слагаемое неотрицательно). Следовательно, удачных клеток не больше n2 − n.
Пример. В таблице на рисунке неудачны только клетки главной диагонали.

б) В решениях 1 и 2 мы будем использовать обозначения из «Оценки 2» пункта а).
Решение 1. Чётность числа k20+k21+. . .+k2n, очевидно, равна чётности k0+k1+. . .+kn = n,

то есть чётности n2. Поэтому количество удачных клеток чётно.
Решение 2. Клетка удачная, если в её строке и столбце отсутствующие числа разные.

В строках с отсутствующим нулём, например, таких клеток k0(k1 + . . .+ kn), и аналогично
для других чисел. Поэтому общее количество удачных клеток равно сумме произведений
kikj, где i 6= j. Но это удвоенная сумма произведений kikj, где i < j, то есть чётное число.

Решение 3. Если удачных клеток 0, то задача решена (0 — чётное число). Иначе пусть
(x, y) — удачная клетка (x — номер строки, y — номер столбца). Посмотрим на её строку.
В ней нет ровно одного какого-то числа из набора 0, 1, 2 . . . , n, пусть это a. Значит, в столбце
y есть число a, пусть оно находится в клетке (x0, y). Тогда в строке x0 нет какого-то другого
числа, пусть b. Так как b не равно a, то в изначальной строке x есть число b. Пусть оно
имеет координаты (x, y0). Тогда очевидно, что клетка (x0, y0) — удачная. Её и сопоставим
исходной удачной клетке (x, y). Так мы разобьём удачные клетки на пары.

Для корректности надо проверить, что никакой клетке не сопоставится она же сама
(это очевидно, так как сопоставление происходит между разными строками), и что клетке
с координатами (x0, y0) сопоставится клетка с координатами (x, y). Это тоже понятно.
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