
СОРОК СЕДЬМОЙ ТУРНИР ГОРОДОВ, ОСЕННИЙ ТУР

Предварительные решения сложного варианта

8 – 9 классы

1. В 12-значном числе A любые две соседние цифры образуют двузначное простое число, при-
чём все эти 11 простых чисел различны.
а) (2 балла) На какую цифру оканчивается число A?
б) (2 балла) Приведите пример такого числа A.

(Георгий Караваев)
а) Ответ: на 9. Двузначные простые числа не могут оканчиваться на 2, 4, 5, 6 или 8. Поэтому

простое число, начинающееся с такой цифры, может стоять только в начале A. Остальных простых
двузначных чисел (начинающихся на 1, 3, 7 или 9) только 10 — это 11, 13, 17, 19, 31, 37, 71,
73, 79 и 97, тогда все они должны быть использованы. При этом на 9 начинается только 97,
а оканчиваются на 9 два числа — 19 и 79, поэтому одно из чисел 19, 79 стоит в конце числа A.

б) Ответ: например, число 417971137319.

2 (6 баллов). В четырёхугольнике ABCD углы B и C равны 120◦. На стороне AD нашлась
точка, из которой остальные стороны видны под равными углами. Найдите угол между диаго-
налями четырёхугольника.

(Михаил Евдокимов, Алексей Заславский)
Ответ: 60◦. Пусть O — точка на стороне AD из условия. Тогда ∠AOB = ∠BOC = ∠COD = 60◦.

Далее можно действовать по-разному.
Решение 1. Пусть T — точка пересечения диагоналей ABCD. Продлим лучи AB и DC до

пересечения в точке K. Они пересекутся, так как углы B и C равны 120◦, причём ∠K = 60◦.
Заметим, что четырёхугольникAKCO вписанный, так как ∠AKC + ∠AOC = 60◦ + 120◦ = 180◦.

Тогда ∠KCA = ∠KOA. Аналогично четырёхугольник DKBO вписанный и ∠KBD = ∠KOD. По-
этому ∠KCA+ ∠KBD = ∠KOA+ ∠KOD = 180◦.

Тогда в четырёхугольнике KBTC сумма углов KCT и KBT равна 180◦ и ∠K = 60◦, откуда
оставшийся угол BTC равен 360◦ − 60◦ − 180◦ = 120◦, то есть угол между диагоналями равен 60◦.
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Решение 2. Рассмотрим поворотную гомотетию с центром O, являющуюся композицией пово-
рота на 60◦, переводящего прямую OA в прямую OB, и гомотетии с коэффициентом OB/OA. При
этой поворотной гомотетии точка A переходит в B, прямая AB — в прямую BC (угол между ними
по условию равен 60◦), прямая OB — в прямую OC, точка B пересечения прямых AB и OB — в
точку пересечения образов этих прямых, то есть в C, прямая BC — в прямую CD, прямая OC — в
прямую OD, точка C пересечения прямых BC и OC — в точку D. Поэтому прямая AC переходит
в прямую BD, следовательно, угол между ними равен 60◦.

3. У Паши и Миши есть квадратная таблица 100×100, в каждой клетке которой стоит либо
плюс, либо минус. Паша и Миша по очереди вычёркивают: Паша — ещё не вычеркнутую строку,
а Миша — ещё не вычеркнутый столбец, пока не останется всего одна невычеркнутая клетка.
Если в ней стоит плюс, то выиграл Паша, а если минус — Миша. Могла ли таблица оказаться
такой, что в этой игре, кто бы её ни начинал — Паша или Миша, — способ гарантировать себе
победу имеется
а) (2 балла) у того, кто ходит вторым;
б) (5 балла) у начинающего?

(Борис Френкин, Алексей Заславский)
а) Ответ: могла. Рассмотрим таблицу, где плюсы и минусы расставлены в шахматном порядке.

Пусть игрок, который ходит вторым, каждым ходом вычеркивает ряд, пересекающий главную диа-
гональ, состоящую из «его» знаков, в клетке, которую перед этим вычеркнул его противник. Тогда
последняя невычеркнутая клетка лежит на этой диагонали, то есть приносит победу второму.

б) Ответ: не могла.
Решение 1. Предположим, что у Паши есть выигрышная стратегия, когда он начинает. Тогда в

игре, где Паша ходит вторым, пусть он игнорирует первый ход Миши (будто его не было) и после
второго хода Миши играет, применяя свою выигрышную стратегию. Сделав свой последний ход,
Паша может считать, что это он начинал, и только сейчас Миша сделал тот самый ход, который
на самом деле у Миши был первым. Значит, тут снова выиграет Паша, а не начинавший Миша.

Вариация решения 1. Предположим, что у Паши есть выигрышная стратегия, когда он начи-
нает. Тогда в игре, где Паша ходит вторым, пусть он действует по своей выигрышной стратегии,
делая свой первый ход по этой стратегии, а второй ход — тот, который надо сделать в ответ на
первый ход Миши, и так далее (то есть каждый раз он как бы запаздывает с ответом, отвечая на
более ранний ход Миши). Тогда Паша выиграет, ответив своим последним ходом на предпоследний
ход Миши (поскольку последний ход Миши уже не имеет значения — не важно, сделан ли он до
хода Паши или после).

Решение 2. Назовём таблицу, для которой способ гарантировать себе победу имеется у начина-
ющего, кто бы это ни был, хорошей. Докажем следующую лемму.

Лемма. Если существует хорошая таблица S размерами (n+ 1)× (n+ 1), то существует и
хорошая таблица T размерами n× n.

Пусть для таблицы S начинающий Паша побеждает, вычёркивая первым ходом строку a, а
начинающий Миша побеждает, вычёркивая первым ходом столбец b. Рассмотрим таблицу T раз-
мерами n × n, полученную из S вычёркиванием строки a и столбца b. Докажем, что в ней снова
выигрывает начинающий.

В самом деле, если начинающий — Паша, то для таблицы S он вычеркнул бы строку a, и
если бы Миша в ответ вычеркнул столбец b, Паша всё равно сумел бы выиграть. Но при этом
как раз осталась бы таблица T , и Паша как раз начинает. Аналогично разбирается случай, когда
начинающий — Миша. Лемма доказана.
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Предположим теперь, что существует хорошая таблица размерами 100×100. Использовав лем-
му 99 раз, получим, что существует хорошая таблица размерами 1× 1. Но в такой таблице стоит
лишь один определённый знак, и если это плюс, то всегда выиграет Паша, а если минус — Миша,
то есть таблица не является хорошей, противоречие.

Решение 3. Рассмотрим два случая.
1) В таблице есть столбец из одних минусов. Пусть начинает Паша. Тогда Миша выиграет, если

не будет вычёркивать этот столбец (Паша за 99 ходов не сможет вычеркнуть из него все минусы).
2) В каждом столбце есть хотя бы один плюс. Пусть начинает Миша. Паша мысленно отмечает

по одному плюсу в каждом столбце. Пока есть строки без отмеченных плюсов, Паша вычёркива-
ет их. Когда они закончатся, количество оставшихся отмеченных плюсов будет равно количеству
оставшихся строк (Миша каждым ходом вычеркивал ровно один отмеченный плюс), то есть в
каждой строке и каждом столбце останется по одному отмеченному плюсу. Далее Паша каждый
раз вычеркивает строку, содержащую отмеченный плюс, только что вычеркнутый Мишей. В ре-
зультате в конце останется клетка с отмеченным плюсом, то есть выиграет Паша.

Решение 4. Пусть начинает Паша. Покажем, что у него есть выигрышная стратегия в том и
только том случае, если имеется строка из одних плюсов.

Если такая строка есть, то пусть Паша её не вычёркивает. Тогда в конце остаётся клетка этой
строки, а в ней стоит плюс и Паша выигрывает.

Наоборот, пусть в каждой строке есть минус. Докажем, что Миша может действовать так, что-
бы всё время сохранять это свойство (тогда в конце останется клетка с минусом и Миша выиграет).
Предположим противное и рассмотрим первый шаг, когда Миша не может сделать нужный ход, а
именно: какой бы столбец он не вычеркнул, появится строка из одних плюсов. Тогда для каждого
столбца есть строка, содержащая ровно один минус, причём именно в этом столбце. Эти строки
различны для всех столбцов, поэтому всего строк не меньше, чем столбцов. Но после хода Паши
всего строк на 1 меньше, чем столбцов — противоречие.

Аналогично доказывается, что если начинает Миша, то у него есть выигрышная стратегия в
том и только том случае, когда имеется столбец из одних минусов. Но если есть такой столбец, то
не может быть строки из одних плюсов. Поэтому если есть выигрышная стратегия у начинающего
Миши, то не может быть выигрышной стратегии у начинающего Паши, что и требовалось.

4. а) (2 балла) В тридевятом царстве n городов. Иван-царевич строит дороги по одной (сна-
чала дорог нет). Каждый раз он выбирает два города, не соединённых напрямую дорогой, рассто-
яние между которыми наименьшее, и соединяет их прямолинейной дорогой. Строительство
заканчивается, когда становится возможным проехать из любого города в любой (напрямую
или через другие города). Обязательно ли никакие две построенные дороги не будут пересекать-
ся вне городов?
б) (6 баллов) Тот же вопрос, если каждый раз выбираются два ближайших друг к другу города,
между которыми невозможен проезд (даже через другие города).

(Алексей Заславский)
а) Ответ: не обязательно. При расположении городов, как на ри-

сунке справа, сначала будут проведены стороны квадрата (в каком-то
порядке), потом обе его диагонали, а затем последняя дорога.

Замечание. Имеется контрпример и всего с четырьмя городами: четырехугольник ABCD с
AD = CD > BD > AC > AB = BC.

б) Ответ: обязательно. Предположим противное — были проведены две пересекающиеся вне
городов дороги: сначала AC, а потом BD.

Тогда это либо диагонали выпуклого четырёхугольникаABCD (первый случай), либоA,B,C,D
лежат на одной прямой (второй случай). Перед проведением дороги BD города B и D не были
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связаны никаким путём. Тогда хотя бы от одного из них (пусть D) нельзя было доехать до до-
роги AC. То, что вместо дороги BD не была проведена ни одна из дорог AD, CD, означает, что
AD > BD, CD > BD. Перед проведением дороги AC города A и C тоже не были связаны путём.
Тогда хотя бы один из них (пусть C) не был соединён с B. То, что вместо дороги AC не была
проведена дорога BC, означает, что BC > AC. Значит, BC + AD > AC + BD. Но, как известно,
в четырёхугольнике сумма двух противоположных сторон меньше суммы диагоналей, поэтому в
первом случае сразу получаем противоречие.

Во втором случае, так как AC и BD пересекаются и AD > BD, CD > BD, то города A и C
лежат вне отрезка BD и по разные стороны от него. Но тогда неравенство BC > AC невозможно,
так как B лежит внутри отрезка AC.

Замечание. Случай, когда ABCD — выпуклый четырёхугольник, можно разобрать немного
иначе. Пусть проведены его диагонали AC и BD. У этого четырёхугольника есть неострый угол,
будем считать, что это угол B. Тогда AC > AB, AC > BC. В момент проведения диагонали
AC города A и C не были связаны путём, поэтому какой-то из них не был связан с B — пусть,
например, A. Тогда перед этим уже была либо проведена дорога AB, либо A и B были соединены
путём. Но поскольку A и C сейчас по-прежнему не соединены путём, то перед этим должен была
быть также проведена либо дорога BC, либо путь, соединяющий B и C. Но тогда A и C уже
связаны путём, противоречие.

5 (10 баллов). Докажите, что при некотором натуральном N строго между соседними ку-
бами N3 и (N + 1)3 находится ровно 1000 точных квадратов.

(Алексей Толпыго)
Попробуем найти подходящее N явно, причём будем искать его в виде N = k2. Чтобы оно

удовлетворяло условию задачи, достаточно выполнения неравенств:

(k3 + 1000)2 < (k2 + 1)3 6 (k3 + 1001)2.

(Тогда строго между кубами (k2)3 и (k2+1)3 будет ровно 1000 квадратов: (k3+1)2, . . . , (k3+1000)2.)
Раскрыв скобки, получим:

k6 + 2000k3 + 10002 < k6 + 3k4 + 3k2 + 1 6 k6 + 2002k3 + 10012.

Вычтем из всех частей k6 и поделим все части на k3. Получим:

2000 +

(
100

k

)3

< 3k +
3

k
+

1

k3
6 2002 +

10012

k3
.

Тогда такое число k, что 3k = 2001, то есть k = 667, подходит, поскольку при этом k, очевидно,(
100
k

)3
< 1 и 3

k
+ 1

k3
< 1.

Замечание. Идея другого решения приведена в решениях 10–11 классов (см. задачу 4).

6. У Пети есть 60 карточек с номерами от 1 до 60, на каждой написано действительное
число. За один вопрос Вася может выбрать любые 17 номеров и узнать у Пети сумму чисел на
карточках с этими номерами. Может ли Вася гарантированно определить сумму чисел на всех
60 карточках, задав
а) (3 балла) не более 30 вопросов;
б) (4 балла) не более 20 вопросов;
в) (5 баллов) не более 10 вопросов?

(Алексей Толпыго)
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Ответ: может во всех трёх пунктах. Первые два вопроса всегда тратим на 17+ 17 = 34 числа и
узнаём их сумму, остаются 26 чисел.

а) Расположим оставшиеся 26 чисел по кругу и узнаем сумму каждых 17 подряд идущих из
них за 26 вопросов. Сложив эти 26 ответов и поделив на 17 (так как каждое число посчитано в
общей сумме 17 раз), мы узнаем сумму этих 26 чисел. И всю сумму тоже узнаем, прибавив первые
два ответа. В итоге мы потратили 2 + 26 = 28 вопросов.

б) Разобьём оставшиеся 26 чисел на два блока: из 9 и из 17 чисел. Пусть суммы в этих блоках
соответственно равны A и B. За один ход можно узнать B (выбрав весь второй блок). Теперь, как
в пункте а), расположим числа второго блока по кругу и далее за ход будем узнавать сумму 9
чисел первого блока и 8 подряд идущих чисел второго, каждый раз выбирая ещё не выбиравшиеся
8 подряд идущих чисел. Тогда за 17 вопросов, сложив полученные ответы, мы узнаем величину
17A+8B, так как во втором блоке мы переберём все возможные варианты 8 чисел, идущих подряд,
и каждое число второго блока в общей сумме будет посчитано 8 раз. Но слагаемое 8B нам известно,
откуда найдём A и потом A+B. В итоге мы потратили 2 + 1 + 17 = 20 вопросов.

Замечание. Есть много других вариантов разбиения 26 чисел на 2 блока, которые позволяют
уменьшить число вопросов. Например, разобьём их на два блока: из 10 чисел и из 16 чисел. Пусть
суммы в этих блоках соответственно равны A и B.

За 10 вопросов узнаем сумму A + 10B, проверяя каждый раз 1 + 16 чисел — по одному числу
первого блока и все 16 чисел первого блока.

За 4 вопроса узнаём 2A+ 3B, проверяя каждый раз 5 + 12 чисел — это 5 чисел первого блока,
которые сдвигаем циклически, и 12 чисел второго блока, которые сдвигаем циклически (12 ·4 = 48,
то есть второй блок будет подсчитан трижды).

Далее, найдём B, вычислив 2(A + 10B) − (2A + 3B) и поделив на 17. После этого найдём и A
(например, вычтя 10B из суммы A+ 10B). В итоге мы потратили 2 + 10 + 4 = 16 вопросов.

в) Разобьём оставшиеся 26 чисел их на три блока: из 5 чисел, из 9 чисел и из 12 чисел. Пусть
суммы в этих блоках соответственно равны A, B и C.

За 1 вопрос, взяв числа первого и третьего блоков, узнаём A+ C.
За 4 вопроса узнаём 4A+4B+C, проверяя каждый раз 5+9+3 чисел — это все 5 чисел первого

блока, все 9 чисел второго блока и 3 числа третьего, которые сдвигаем циклически (3 · 4 = 12, как
раз получится весь третий блок).

За 3 вопроса узнаём 3B+2C, проверяя каждый раз 9+8 чисел — это все 9 чисел второго блока,
и 8 чисел третьего, которые сдвигаем циклически (3 · 8 = 24, так что третий блок будет подсчитан
дважды).

Далее, сложив 9 · (A+C)+ 2 · (4A+4B+C)+ 3 · (3B+2C), получим 17(A+B+C), и, поделив
на 17, узнаем сумму этих 26 чисел. В итоге мы потратили 2 + 1 + 4 + 3 = 10 вопросов.

Замечание 1. Интересно было бы узнать, за какое наименьшее число вопросов можно найти
сумму всех 60 чисел (ответ жюри неизвестен).

Замечание 2. Интересно также узнать, за какое наименьшее число вопросов можно узнать хотя
бы одно из этих 60 чисел — например, записанное на первой карточке. Жюри умеет находить это
число за 10 вопросов. С другой стороны, за 18 вопросов можно узнать любые конкретные 18 чисел.

7 (12 баллов). Дано натуральное k. На столе по кругу лежат n внешне одинаковых монет
массами 1, 2, . . . , n г. Вам известно, что эти массы идут по порядку, но неизвестно, по часовой
стрелке или против, и с какого места начинаются. Одним взвешиванием разрешается сравнить
любые две монеты и узнать, какая тяжелее. Барон Мюнхгаузен утверждает, что вы можете
сделать k взвешиваний так, чтобы по их результатам гарантированно определить массу хотя
бы одной монеты. При каком наибольшем n слова барона будут правдой?

(Иван Митрофанов)
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Ответ: n = 2 при k = 1 и n = 2k − 1 при остальных k.
Случай k = 1 очевиден. Далее разберём случай k > 1.
Алгоритм. Пусть n = 2k − 1. Пусть уже проведено несколько взвешиваний, нарисуем со-

ответствующие им стрелки (от меньшей монеты к большей). Будем считать, что монеты делят
окружность, на которой лежат, на равные промежутки длины 1 (а сами монеты — точки на этой
окружности).

Пусть монеты A,B,C,D расположены на окружности именно в таком циклическом порядке
(возможно, A = D или B = C) и проведены стрелки

−→
AC и

−−→
BD. Назовём зазором между этими

стрелками объединение дуг BC и DA, а длиной зазора — длину наибольшей из дуг BC и DA (дуги
берём «в том же циклическом порядке», то есть, например, дуга BC не содержит внутри точек
A и D). Докажем, что «разрыв» между монетами (граница между монетой массы 1 и монетой
массы n) расположен внутри зазора (то есть, на BC или DA).

В самом деле, пусть зазор расположен, например, на дуге CD.
Пройдём по окружности от монеты массой 1 до монеты массой n
(массы всё время будут возрастать).

В зависимости от направления, в котором идут монеты, мы в
одном случае пройдём сначала D, а потом B, что невозможно (так
как B < D), а в другом случае пройдём сначала C, а потом A, что
тоже невозможно (так как A < C). Противоречие. Аналогично,
разрыв не может быть на AB.

Теперь мы готовы описать сам алгоритм. Первые две стрелки выбираем «почти перпендику-
лярными», то есть так, чтобы четыре их конца делили окружность на дуги, длины которых не
больше чем 2k−2. Тогда длина зазора между ними будет тоже не больше чем 2k−2.

Докажем, что далее можно делать взвешивания так, чтобы ми-
нимальный зазор с каждым разом уменьшался хотя бы в два раза.
Действительно, пусть зазор между

−→
AC и

−−→
BD не превосходит 2a.

Пусть M — середина (или почти середина в случае нечётной дли-
ны) дуги BC, а N — середина (или почти середина) дуги DA. Если
M < N , то зазор между

−−→
MN и

−→
AC не превосходит 2a−1 (см. рису-

нок), а если N < M , это верно для зазора между
−−→
NM и

−−→
BD.

Действуя так, мы после k-го взвешивания найдём две стрелки с зазором не больше 1. Путь это−→
AC и

−−→
BD. Случаи B = C и A = D разбираются тривиально (в первом случае разрыв проходит

между лежащими рядом A и D, и так как A < C = B < D, то A = 1; во втором аналогично B = 1).
В случае различных A, B, C, D разрыв проходит между лежащими рядом A и D или между

лежащими рядом B и C, причём, так как A < C и B < D, все монеты на дуге AB легче, чем на
дуге CD. Но одна из этих дуг чётной длины (то есть с нечётным числом монет), и тогда монета,
лежащая посередине этой дуги, определяется однозначно.

Оценка. Предположим, что такой алгоритм есть при некотором n и за k взвешиваний мож-
но вычислить какую-то монету. Тогда после всех взвешиваний монеты могут быть расположены
не более чем двумя способами, и, произведя ещё одно взвешивание, мы узнаем полностью всю
конфигурацию. Но всего разных конфигураций 2n, а возможных результатов последовательности
из k + 1 взвешиваний — не более 2k+1. Итак, 2n 6 2k+1, откуда n 6 2k. Поэтому осталось лишь
доказать, что при n = 2k алгоритма нет.

Предположим противное, и есть какой-то алгоритм. Всего имеется 2k+1 возможных конфигу-
раций (того, как в действительности расположены монеты). Эти конфигурации бывают типа A
или B (по или против часовой стрелки). Здесь мы используем, что k > 1 (в случае двух монет нет
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разницы между расположениями по и против часовой стрелки). После выполнения k взвешиваний
должны исключаться все конфигурации, кроме может быть двух: одной из A, второй из B. Тогда
в любой ситуации в конце должно оставаться ровно две конфигурации: одна из A, вторая из B.

Изначально, до взвешиваний, в A иB по 2k конфигураций. Несложно понять, что после каждого
взвешивания, вне зависимости от результата взвешивания, число возможных конфигураций из A
должно в точности уполовиниваться — иначе результаты следующих взвешиваний могут оказаться
такие, что в конце останется либо 0, либо больше одной конфигурации из A. То же верно и для B.

Нарисуем правильный n-угольник (вершины соответствуют монетам), каждую конфигурацию
типа A изобразим как красную сторону многоугольника (соединяющую монеты 1 и n). Каждая
конфигурация типа B — синяя сторона многоугольника (снова соединяющая монеты 1 и n). Из-
начально, когда имеется 2k+1 возможных конфигураций, каждая сторона «двойная» — проведена
и синим, и красным. Далее каждым ходом алгоритма выбираются две вершины, X и Y . Заметим,
что далее, в зависимости от ответа (кто из X, Y тяжелее), происходит одно из двух:

либо выкидываются синие стороны на дуге XY и красные на дуге Y X,
либо выкидываются синие стороны на дуге Y X и красные на дуге XY .
И, напомним, нам надо, чтобы каждый раз в любом случае число красных сторон уменьшалось

ровно вдвое, и число синих сторон уменьшалось вдвое.
Индукцией по i неcложно показать, что после i-го хода синие стороны будут образовывать дугу

длины 2k−i, а красные стороны — симметричную ей дугу. Переход индукции — несложным перебор
показываем, что следующее взвешивание должно затрагивать середины этих дуг.

Тогда после k взвешиваний останутся две противоположные стороны, одна красная, а другая
синяя. Но такие две конфигурации не имеют общих чисел, поэтому ни одно число восстановить
нельзя.

10 – 11 классы

1. У Паши и Миши есть квадратная таблица 100×100, в каждой клетке которой стоит либо
плюс, либо минус. Паша и Миша по очереди вычёркивают: Паша — ещё не вычеркнутую строку,
а Миша — ещё не вычеркнутый столбец, пока не останется всего одна невычеркнутая клетка.
Если в ней стоит плюс, то выиграл Паша, а если минус — Миша. Могла ли таблица оказаться
такой, что в этой игре, кто бы её ни начинал — Паша или Миша, — способ гарантировать себе
победу имеется
а) (1 балла) у того, кто ходит вторым;
б) (4 балла) у начинающего?

(Борис Френкин, Алексей Заславский)
а) Ответ: могла. Рассмотрим таблицу, где плюсы и минусы расставлены в шахматном порядке.

Пусть игрок, который ходит вторым, каждым ходом вычеркивает ряд, пересекающий главную диа-
гональ, состоящую из «его» знаков, в клетке, которую перед этим вычеркнул его противник. Тогда
последняя невычеркнутая клетка лежит на этой диагонали, то есть приносит победу второму.

б) Ответ: не могла.
Решение 1. Предположим, что у Паши есть выигрышная стратегия, когда он начинает. Тогда в

игре, где Паша ходит вторым, пусть он игнорирует первый ход Миши (будто его не было) и после
второго хода Миши играет, применяя свою выигрышную стратегию. Сделав свой последний ход,
Паша может считать, что это он начинал, и только сейчас Миша сделал тот самый ход, который
на самом деле у Миши был первым. Значит, тут снова выиграет Паша, а не начинавший Миша.

Вариация решения 1. Предположим, что у Паши есть выигрышная стратегия, когда он начи-
нает. Тогда в игре, где Паша ходит вторым, пусть он действует по своей выигрышной стратегии,
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делая свой первый ход по этой стратегии, а второй ход — тот, который надо сделать в ответ на
первый ход Миши, и так далее (то есть каждый раз он как бы запаздывает с ответом, отвечая на
более ранний ход Миши). Тогда Паша выиграет, ответив своим последним ходом на предпоследний
ход Миши (поскольку последний ход Миши уже не имеет значения — не важно, сделан ли он до
хода Паши или после).

Решение 2. Назовём таблицу, для которой способ гарантировать себе победу имеется у начина-
ющего, кто бы это ни был, хорошей. Докажем следующую лемму.

Лемма. Если существует хорошая таблица S размерами (n+ 1)× (n+ 1), то существует и
хорошая таблица T размерами n× n.

Пусть для таблицы S начинающий Паша побеждает, вычёркивая первым ходом строку a, а
начинающий Миша побеждает, вычёркивая первым ходом столбец b. Рассмотрим таблицу T раз-
мерами n × n, полученную из S вычёркиванием строки a и столбца b. Докажем, что в ней снова
выигрывает начинающий.

В самом деле, если начинающий — Паша, то для таблицы A он вычеркнул бы строку a, и
если бы Миша в ответ вычеркнул столбец b, Паша всё равно сумел бы выиграть. Но при этом
как раз осталась бы таблица T , и Паша как раз начинает. Аналогично разбирается случай, когда
начинающий — Миша. Лемма доказана.

Предположим теперь, что существует хорошая таблица размерами 100×100. Использовав лем-
му 99 раз, получим, что существует хорошая таблица размерами 1× 1. Но в такой таблице стоит
лишь один определённый знак, и если это плюс, то всегда выиграет Паша, а если минус — Миша,
то есть таблица не является хорошей, противоречие.

Решение 3. Рассмотрим два случая.
1) В таблице есть столбец из одних минусов. Пусть начинает Паша. Тогда Миша выиграет, если

не будет вычёркивать этот столбец (Паша за 99 ходов не сможет вычеркнуть из него все минусы).
2) В каждом столбце есть хотя бы один плюс. Пусть начинает Миша. Паша мысленно отмечает

по одному плюсу в каждом столбце. Пока есть строки без отмеченных плюсов, Паша вычёркива-
ет их. Когда они закончатся, количество оставшихся отмеченных плюсов будет равно количеству
оставшихся строк (Миша каждым ходом вычеркивал ровно один отмеченный плюс), то есть в
каждой строке и каждом столбце останется по одному отмеченному плюсу. Далее Паша каждый
раз вычеркивает строку, содержащую отмеченный плюс, только что вычеркнутый Мишей. В ре-
зультате в конце останется клетка с отмеченным плюсом, то есть выиграет Паша.

Решение 4. Пусть начинает Паша. Покажем, что у него есть выигрышная стратегия в том и
только том случае, если имеется строка из одних плюсов.

Если такая строка есть, то пусть Паша её не вычёркивает. Тогда в конце остаётся клетка этой
строки, а в ней стоит плюс и Паша выигрывает.

Наоборот, пусть в каждой строке есть минус. Докажем, что Миша может действовать так, что-
бы всё время сохранять это свойство (тогда в конце останется клетка с минусом и Миша выиграет).
Предположим противное и рассмотрим первый шаг, когда Миша не может сделать нужный ход, а
именно: какой бы столбец он не вычеркнул, появится строка из одних плюсов. Тогда для каждого
столбца есть строка, содержащая ровно один минус, причём именно в этом столбце. Эти строки
различны для всех столбцов, поэтому всего строк не меньше, чем столбцов. Но после хода Паши
всего строк на 1 меньше, чем столбцов — противоречие.

Аналогично доказывается, что если начинает Миша, то у него есть выигрышная стратегия в
том и только том случае, когда имеется столбец из одних минусов. Но если есть такой столбец, то
не может быть строки из одних плюсов. Поэтому если есть выигрышная стратегия у начинающего
Миши, то не может быть выигрышной стратегии у начинающего Паши, что и требовалось.
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2 (6 баллов). В выпуклом четырёхугольнике через середину каждой диагонали проведён отре-
зок с концами на сторонах четырёхугольника, параллельный другой диагонали. Докажите, что
концы этих двух отрезков образуют четырёхугольник, в котором есть пара параллельных сто-
рон.

(Сергей Токарев)
Пусть O — точка пересечения диагоналей четырёхугольника ABCD, P и Q — середины диа-

гоналей AC и BD соответственно. Разберём случай, когда ни одна из точек P , Q не совпадает с
точкой O (оставшиеся случаи разбираются аналогично).

Не теряя общности, можно считать, что P лежит на отрезке OA, а Q — на отрезке OD. Тогда
прямая, проходящая через P параллельно BD, пересекает стороны AB (пусть в точке K) и AD,
а прямая, проходящая через Q параллельно AC, пересекает стороны CD (пусть в точке L) и AD.
Достаточно доказать, что KL ‖ AD, то есть что SAKD = SALD. Имеем:

SAKD =
AK

AB
·SABD =

AP

AO
·SABD =

AC

2AO
· DB

DO
·SAOD.

Аналогично,

SALD =
DB

2DO
· AC
AO
· SAOD = SAKD.

3. N узников сидят в камерах, расположенных по кругу. Сегодня у них есть возможность
посовещаться и договориться, а завтра поутру каждый узник бросит игральный кубик. После
этого каждый должен сделать предположение — какое число выпало у каждого из 5 узников,
сидящих в 5 камерах, следующих по часовой стрелке. Если будет угадано хотя бы одно из выпав-
ших чисел хоть у какого-то узника, всех освободят. Как им действовать, чтобы гарантированно
выйти на свободу, если
а) (4 балла) N = 47;
б) (4 балла) N = 48?

(Татьяна Казицына)
Решение 1.
а) Занумеруем узников по часовой стрелке. Узники договариваются: каждый «предположит»,

что у следующих пяти выпало то же число, что и у него. Пусть у 1-го узника выпадет число a.
Еcли повезёт, то и у 2-го выпадет a и всех освободят. В противном случае у 2-го выпадет другое
число b. Еcли повезёт, то у 3-го выпадет a или b, и всё хорошо. В противном случае у 3-го выпадет
третье число c. При продолжающемся невезении у 4-го, 5-го и 6-го выпадут новые числа d, e, f , а
у 7-го – снова a. Далее при невезении всё продолжится по циклу и у 43-го узника выпадет a, то
есть он угадает число 1-го, и всех освободят.

б) Первые 47 узников действуют так же, как в а), а 48-й «предсказывает», что у следующих
пяти выпало какое-нибудь одно и то же число, но не то, что у него. При невезении у него выпадет f ,
поэтому он угадает число у одного из первых пяти узников.

Решение 2.
Занумеруем узников по часовой стрелке. Узники договариваются: каждый «предположит», что

у второго за ним выпала 2, у третьего — 3, у четвёртого — 4, у пятого — 5, а у первого — либо 1,
либо 6, а что именно — поясним ниже.

Заметим, что если хоть у одного узника выпадет число a, равное 2, 3, 4 или 5, то кто-то угадает
(так как где-то перед каждым узником есть тот, кто предсказывает ему число a). Поэтому далее
можно считать, что у всех выпало 1 или 6.
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а) Если узников всего 47, то пусть каждый предскажет своему 1-му узнику выпадение 1, если
у него самого выпало 1, и предскажет выпадение 6, если у него самого выпало 6. Тогда если у 1-го
узника выпало, скажем, 1, то у 2-го — 6, у 3-го — 1, и так далее, у 47-го — 1, и он угадает, что
выпало у 1-го узника.

б) Если узников всего 48, то пусть каждый узник с 1-го до 47-го предскажет своему 1-му узнику
выпадение 1, если у него самого выпало 1, и предскажет выпадение 6, если у него самого выпало 6.
А 48-й узник пусть действует наоборот: предскажет своему 1-му узнику выпадение 6, если у самого
выпало 1, и предскажет выпадение 1, если у самого выпало 6. Тогда если у 1-го узника выпало,
скажем, 1, то у 2-го — 6, у 3-го — 1, и так далее, у 48-го — 6, и он угадает, что выпало у 1-го
узника.

Замечание. Не существует детерминированной стратегии, в которой каждый узник предска-
зывает какие-то конкретные числа, не зависящие от того, что у него выпало (например, остаток
от деления номера своего места в круге на 6 и т.п.), так как тогда для каждого узника заранее
имеется 5 конкретных предсказаний, и мы можем считать, что у него выпало число, отличное от
всех этих 5 вариантов — тогда никто ничего не угадает).

4 (8 баллов). Докажите, что при некотором натуральном N строго между соседними кубами
N3 и (N + 1)3 находится ровно 1000 точных квадратов.

(Алексей Толпыго)
Решение 1. Попробуем найти подходящее N явно, причём будем искать его в виде N = k2.

Чтобы оно удовлетворяло условию задачи, достаточно выполнения неравенств:

(k3 + 1000)2 < (k2 + 1)3 6 (k3 + 1001)2.

(Тогда строго между кубами (k2)3 и (k2+1)3 будет ровно 1000 квадратов: (k3+1)2, . . . , (k3+1000)2.)
Раскрыв скобки, получим:

k6 + 2000k3 + 10002 < k6 + 3k4 + 3k2 + 1 6 k6 + 2002k3 + 10012.

Вычтем из всех частей k6 и поделим все части на k3. Получим:

2000 +

(
100

k

)3

< 3k +
3

k
+

1

k3
6 2002 +

10012

k3
.

Тогда такое число k, что 3k = 2001, то есть k = 667, подходит, поскольку при этом k, очевидно,(
100
k

)3
< 1 и 3

k
+ 1

k3
< 1.

Идея решения 2. Количество квадратов между N3 и (N + 1)3 равно числу целых точек на
интервале (N3/2, (N + 1)3/2). Обозначим через L = L(N) этот интервал и через l = l(N) — его
длину. Очевидно, величина l(N) растёт, и нетрудно доказать, что она растёт со скоростью

√
N , то

есть не очень быстро. Количество целых точек на L(N) равно либо [l(N)], либо [l(N)] + 1.
Пусть r — произвольное достаточно большое натуральное число (здесь r = 1000). Найдём такое

натуральное N , что r− 1
2
< l(N) < r, тогда на интервале L(N) лежит либо r, либо r−1 целых точек.

Если их r, то всё получилось, в противном случае рассмотрим интервал L(N +1). Можно считать,
что для него также выполняется неравенство r− 1

2
< l(N +1) < r, соответственно, на нём также r

или r− 1 целых точек. Но если бы их было r− 1, то на объединении интервалов L(N) и L(N + 1)
лежало бы только 2r−2 целые точки, тогда как его длина больше 2r−1. Противоречие. (Отдельно
надо рассмотреть случай, когда один из концов интервала целый, но это тоже несложно). Осталось
лишь заметить, что число 1000 достаточно большое для наших целей.
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5. На каждой из сторон правильного N-угольника живёт робот. Каждый робот едет по своей
стороне со своей постоянной скоростью, в вершине мгновенно разворачивается и продолжает
ехать с той же скоростью в противоположном направлении, и так далее. Когда два робота
встречаются в какой-то вершине, там вспыхивает искра. Могло ли оказаться, что в каждой
вершине искры вспыхивают с одной и той же ненулевой частотой, если
а) (6 баллов) N = 3;
б) (3 балла) N = 5?

(Александр Юран)
а) Решение 1.
Докажем, что искры не могут вспыхивать с равной частотой. Предположим, искры вспыхивают

каждые t секунд, и за время t роботы проезжают свои стороныm, n и k раз. Домножим их скорости
на mnk

t
. Сократим скорости на их наибольший общий делитель и получим ситуацию, в которой

скорости целые и их наибольший общий делитель равен 1. Пусть в ней первый, второй и третий
роботы проезжают стороны за a, b и c секунд соответственно.

Тогда промежуток между вспышками — это

НОК(2a, 2b) = НОК(2b, 2c) = НОК(2a, 2c).

Значит,
НОК(a, b) = НОК(b, c) = НОК(a, c).

Рассмотрим три последовательные искры: между первым и третьим роботом, между первым и
вторым и между вторым и третьим. Пусть между соответствующими им искрам первый, второй
и третий роботы прошли по своим сторонам l, m и n раз соответственно. Тогда l, m и n нечётны и

la+mb = nc⇒ a+ b ≡ c (mod 2).

Значит, либо a, b и c чётны, либо два из них нечётны, а третье чётно. Если все они чётны,
то a, b и c имеют общий делитель 2, что противоречит нашему предположению. А если два из
них нечётны, а третье чётно, то их попарные наименьшие кратные не все одной чётности, что
невозможно, так как они должны быть равны.

Таким образом, мы пришли к противоречию, то есть искры не могут вспыхивать через равные
промежутки времени.

б) Решение 1. Да, такое возможно. Обозначим пятиугольник через ABCDE и будем считать,
что его сторона равна 1. Все роботы начинают одновременно. Два робота начинают в A. Один из
них едет в сторону E со скоростью 2, второй — в сторону B со скоростью 1. Третий робот начинает
в B и едет к C со скоростью 2. Четвёртый начинает в середине CD едет к C со скоростью 1. Пятый
начинает в середине ED и едет к E со скоростью 1.

В каждой вершине искры будут вспыхивать через промежуток времени, равный 2: вспышки в
вершине A — в моменты времени 2k, в вершине B — в моменты 2k+1, в вершине C — в моменты
2k+ 1

2
, в вершине D — в моменты 2k+ 3

2
, в вершине E — в моменты 2k+ 1

2
, где k — неотрицательное

целое.
Решение 2. На рисунке внутри пятиугольника указано время в минутах, которое требуется

роботу, чтобы проехать соответствующую сторону, а у вершин — моменты времени, когда роботы
в них попадают (из этих данных можно восстановить, где роботы начинают движение в момент
времени 0: например, два «верхних» робота начинают движение по своим сторонам из верхней
вершины, а робот на нижней стороне начинает движение влево из её середины). Как видно, в
каждой вершине искрит раз в 4 минуты.
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6 (10 баллов). Улитка проползла по плоскости по контуру замкнутой несамопересекающейся
n-звенной ломаной. Известно, что она двигалась только в трех направлениях: вверх, вправо и
вниз-влево (под углом 45◦ к горизонтали). Докажите, что n нечётно.

(Павел Кожевников)
Решение 1. Будем использовать только, что улитка может двигаться в трёх направлениях,

сонаправленных с одним из трёх векторов ~e1, ~e2, ~e3, где ~e1+~e2+~e3 = ~0. Не умаляя общности, будем
считать, что эти векторы ~ei идут в порядке ~e1, ~e2, ~e3, считая от ~e1 против часовой стрелки.

При повороте улитки (в вершине многоугольника) текущий вектор направления ~ei меняется на
вектор ~ei±1 (здесь и далее нижние индексы у векторов берём по модулю 3). Поэтому каждый раз
улитка поворачивается на угол между каким-то двумя соседними векторами из наших трёх по или
против часовой стрелки.

Пусть улитка проползла контур многоугольника против часовой стрелки (то есть так, что
внутренность ломаной оставалась всё время слева от улитки) и снова находится в исходной точке и
повёрнута в исходном направлении. Тогда она сделала суммарно 1 оборот против часовой стрелки
(сумма внешних углов многоугольника, взятых со знаками (в зависимости от того, поворот по
часовой стрелке или против), равна 360◦). Это значит, что количество изменений индекса на +1
было ровно на 3 больше, чем изменений на −1. Тогда общее количество изменений на ±1 нечётно,
но оно равно количеству вершин n. Этим завершается решение.

Замечание 1. На самом деле, исходную задачу (да и общий случай) можно свести к другому,
менее сложному частному случаю. А именно, рассмотрим в плоскости движения улитки треуголь-
ник с углами 45◦, 45◦, 90◦ и сторонами, параллельными направлениям движения улитки, и сделаем
аффинное преобразование плоскости, переводящее этот треугольник в равносторонний. При аф-
финном преобразовании параллельные прямые переходят в параллельные, поэтому весть путь
улитки перейдёт в новую ломаную, по которой улитка движется в трёх равноправных направле-
ниях ~e1, ~e2, ~e3, образующих друг с другом равные углы (по 120◦).

В этом частном случае решение можно изложить более элементарно, используя лишь формулу
суммы углов n-угольника. Действительно, теперь наша ломаная ограничивает n-угольник с углами
180◦ ± 120◦; количество тех и других углов обозначим k+ и k− соответственно. Тогда сумма углов
нашего n-угольника с одной стороны равна S = (n− 2) · 180◦ = n · 180◦− 360◦, а с другой стороны,

S = k+ · (180◦+120◦)+k− · (180◦−120◦) = (k++k−) ·180◦+(k+−k−) ·120◦ = n ·180◦+(k+−k−) ·120◦.

Отсюда (k+ − k−) · 120◦ = −360◦, значит, k+ − k− = −3. Следовательно, n = k+ + k− = 2k− − 3,
Видим, что n нечётно, и задача решена.
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Замечание 2. Соображения, приведённые в решении 1, показывают, что для произвольной (воз-
можно самопересекающейся) замкнутой n-звенной траектории нашей улитки (которой разрешено
двигаться в трёх направлениях) чётность числа n совпадает с чётностью количества полных обо-
ротов (вектора скорости улитки).

Можно показать, что для произвольной замкнутой ломаной четность количества оборотов сов-
падает с четностью количества ее точек самопересечения (здесь считаем, что разрешены только
самопересечения пар звеньев во внутренних точках).

Решение 2. Поставим в соответствие пути улитки (многоугольнику) кольцевое слово из букв
П (ход вправо), В (ход вверх) и Д (ход по диагонали); в этом слове нет соседних одинаковых
букв. Каждой паре соседних букв в этом слове соответствует ориентированный угол, на который
поворачивается улитка при переходе с первой стороны на вторую. Этот угол с точностью до знака
равен внешнему углу нашего многоугольника. Например, паре ПВ соответствует угол 90◦, а паре
ДВ — угол −135◦. Из теоремы о сумме внешних углов многоугольника следует, что сумма всех
этих углов равна 360◦, если улитка обходит многоугольник против часовой стрелке, и −360◦ — в
противном случае.

Будем сокращать полученное слово, а именно, тройку букв вида XYX будем заменять на
букву X. При этом чётность количества букв сохранится, а соседних одинаковых букв, очевидно,
не появится. Кроме того, сумма соответствующих углов не изменится, поскольку парам XY и
Y X соответствуют противоположные углы. Когда процесс закончится, останется слово, в котором
не только соседние, но и буквы через одну не повторяются. Таких слов есть всего два вида (с
точностью до кругового сдвига): ПВДПВД... и ПДВПДВ... Соответствующие суммы углов — это
(90◦ + 135◦ + 135◦) + (90◦ + 135◦ + 135◦) + . . . и (−135◦ − 135◦ − 90◦) + (−135◦ − 135◦ − 90◦) + . . .
Допустимые суммы 360◦ или −360◦ будут только в словах из трёх букв. Значит, получено одно из
таких слов, а в исходном слове число букв было нечётно, что и требовалось.

7 (14 баллов). Дано натуральное k. На столе по кругу лежат n внешне одинаковых монет
массами 1, 2, . . . , n г. Вам известно, что эти массы идут по порядку, но неизвестно, по часовой
стрелке или против, и с какого места начинаются. Барон Мюнхгаузен утверждает, что вы
можете сделать k взвешиваний на чашечных весах без гирь так, чтобы по их результатам
гарантированно определить массу хотя бы одной монеты. При каком наибольшем n слова барона
будут правдой? (На каждую чашу помещается сколько угодно монет.)

(Александр Шаповалов)
Ответ: n = 2 при k = 1 и n = 3k при k > 1.

Оценка. За k взвешиваний результаты разобьют все 2n вариантов расположения монет не более
чем на 3k частей. При n > 3k в какую то часть попадут не менее 3 вариантов, среди них будут два
одинакового направления (оба по часовой стрелке или оба против часовой). Веса любой монеты
в этих двух вариантах различаются, поэтому никакой из весов нельзя определить однозначно.
Значит, n 6 3k.

Осталось разобрать ещё случай k = 1 — проверить, что n = 3 не подходит. Будем называть
монету числом, равным её весу в граммах. Заметим, что одним взвешиванием мы либо сравним
друг с другом какие-то две монеты и ни одну из трёх имеющихся не определим (мы могли сравнить
монеты 1 и 2, отложив монету 3, или сравнить монеты 2 и 3, отложив монету 1 — ни одна монета «не
осталась на месте»), либо сравним одну монету и пару оставшихся монет и в случае неравенства
снова ни одну не определим (могли взять монету 1 против монет 2 и 3, а могли взять монету 2
против 1 и 3, причём в паре монеты могут идти по кругу в любом порядке).

Алгоритм. Ясно, что при k = 1 и n = 2 достаточно сравнить две имеющиеся монеты друг с
другом, и мы узнаем их обе. Далее везде считаем, что k > 1.
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Способ 1. Пусть n = 3k. Пусть монеты выкладываются в вершины правильного n-угольника с
вертикальной осью симметрии, проходящей через нижнюю вершину. Их веса определяются одно-
значно, если мы знаем, на какой стороне лежат веса 1 и n (скажем, что это разрыв) и направление
(по или против часовой; разрыв по часовой обозначим n1, против часовой — 1n). Пусть мы поло-
жили несколько монет на левую чашу и столько же на правую. Пометим буквой Л вершины, из
которой монеты взяты на левую чашу, и буквой П — на правую. Будем класть на каждую чашу
монеты парами из симметричных вершин, по 2 или по 4 на каждую чашу. Результат взвешивания
определяет набор подозрительных на разрыв сторон (набор зависит от направления). Будем брать
монеты из вершин как на рисунках

Эти вершины разбивают круг монет на участки. Нетрудно убедиться, что при данном направ-
лении (на рисунках — по часовой стрелке) результаты взвешивания зависят только от участка, на
который попал разрыв и не зависят от места разрыва на участке (при сдвиге разрыва по участ-
ку все веса увеличиваются или уменьшаются на одно и то же число, поэтому разность чаш не
меняется). При расположении разрыва на оси симметрии суммы в каждой симметричной паре
одинаковы, а при переходе разрыва по часовой стрелке через монету сумма на соответствующей
чаше уменьшается на n. Это позволяет узнать результаты взвешивания на участках, приведённые
на рисунке. При смене направления на противоположное и результат меняется на противополож-
ный (знак > меняется на < и наоборот.) Число сторон на участке от места A до места B по часовой
стрелке обозначим AB.

Проведём первое взвешивание по 2 монеты ЛЛ ? ПП так, чтобы было |ЛЛ| = 1, |ПП| = n/3− 1
(тогда |ЛП| = |ПЛ| = n/3). При равенстве подозрительные стороны на ЛЛ+ПП, при неравенстве
на ЛП+ПЛ, при < подозрительны n1 на ЛП и 1n на ПЛ, при > наоборот.

Изначально было по n подозрительных сторон для каждого направления, теперь их осталось
по n/3. Сохранилась симметрия подозрительных сторон относительно вертикальной оси.

Случай 1: при неравенстве у нас есть два участка, симметричных друг другу, на одном подо-
зрительны только стороны вида 1n, на другом — только n1.

Случай 2: При равенстве у нас есть два участка (один длины 1), каждый участок симметричен
и подозрительная сторона может быть как вида 1n, так и вида n1. Будем проводить взвешивания
так, чтобы сохранять все перечисленные свойства.

Случай 1. У нас есть два подозрительных участка длин 3m, где один симметричен другому.
В первый раз такие участки возникли при неравенстве > или <, запомним, при каком именно.
Обозначаем их концы ЛЛ′ и Л′Л и разбиваем каждый на три равные части монетами П и П′.
Монеты лежат по кругу так ЛПП′Л′Л′П′ПЛ. Сравниваем ЛЛЛ′Л′ ? ППП′П′. При равенстве подо-
зрительны монеты на П′П и ПП′, при неравенстве того же знака как запомненное – подозрительны
участки ЛП + ПЛ, при противоположном – участки П′Л′ + Л′П′. Во всех случаях остаются по m
подозрительных симметричных пар.
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Случай 2. Есть два подозрительных участка: EF длины 1 и AB длины 3m−1, где m > 1. Пусть
B′A′ – участок длины 3m − 1 соседний по часовой с AB, который не включает EF (при этом A′

может совпасть с E, см. рисунок).

Выберем вспомогательную ось симметрии, чтобы AB и B′A′ были симметричны относительно
неё. Добавим на участки две симметричные пары монет C, C ′, D, D′ так чтобы |BC| = |AD| = m,
|DC| = m− 1. Взвесим ABB′A′ ? DCC ′D′. При равенстве подозрительны участки EF +DC, при
неравенстве < подозрительны n1 на CB и 1n на AD, при неравенстве > наоборот.

Осталось заметить, что при неравенстве мы получили ситуацию случая 1, при равенстве –
случай 2, все со втрое меньшим m.

Случай 2’. Есть два подозрительных участка, EF длины 1 и AB длины 2. Взвесим FF ′ ? A′B′,
где F ′, A′, B′ – соседи монет F , A, B по часовой. При равенстве подозрительная пара A′B, при
неравенстве< имеем EF = 1n либоA′B = n1, при неравенстве> имеем EF = n1 либоAA′ = 1n. Во
всех случаях после k испытаний остаются подозрительными два расположения противоположного
направления, ввиду нечётности общего числа монет у них есть общая монета.

Способ 2. Мы будем задавать расположение монет границей между монетами 1 и n — назовём
её началом — и направлением, в котором монеты возрастают (по или против часовой стрелки).
Для различных монет A и B назовём дугой AB множество границ между монетами от A до B
против часовой стрелки, а размером дуги — количество границ в ней.

Как и выше, считаем, что k > 1. Объясним, как при n = 3k найти вес одной монеты.
Докажем, что при нечётном количестве монет у двух разных расположений монет есть общая

монета тогда и только тогда, когда у них разное направление. Очевидно, что если направление
одинаковое, то общих монет нет. Если направления разные, то начала этих расположений разбива-
ют монеты на две группы (одна из групп может быть пустой, если начала совпадают), в одной из
этих групп будет нечётное количество монет, и средняя монеты этой группы является общей для
двух расположений. (Приведём также более концептуальное доказательство этого факта, которое
вы можете пропустить без ущерба для понимания дальнейшего решения. Рассмотрим движение,
которое переводит одно расположение монет в другое. Поскольку это меняющее ориентацию дви-
жение плоскости с неподвижной точкой, это симметрия. Но любая ось симметрии правильного
n-угольника для нечётного n проходит через вершину).

Таким образом, достаточно показать, как при n = 3k за k взвешиваний установить, что распо-
ложение — одно из двух с различными направлениями.
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Лемма 1. Пусть дуги AB и CD не пересекаются и имеют размеры 3l. Пусть про расположение
монет известно, что либо его начало на дуге AB, а направление — против часовой стрелки, либо
начало на дуге CD, а направление — по часовой стрелке. Тогда за l взвешиваний можно найти вес
одной монеты.

Доказательство. Докажем лемму по индукции. База индукции для l = 0 очевидна, перейдём
к шагу. Пусть лемма доказана для l − 1, докажем для l. Разделим дугу AB на равные дуги
(размерами 3l−1) монетами K и L, а дугу CD — монетами M и N . Положим на левую чашу весов
монеты A, B, C и D, а на правую — монеты K, L, M и N . Заметим, что, если начало лежит вне
дуги AB или на дуге KL, то сумма масс монет A и B равна сумме масс монет K и L, аналогично
для другой четвёрки монет. Теперь разберём исходы взвешиваний:

• Если чаши уравновесились, то либо начало на дуге KL, а направление — против часовой
стрелке, либо начало на дуге MN , а направление — по часовой стрелке.

• Если левая чаша легче правой, то либо начало на LB, а направление — против часовой
стрелки, либо начало на CM , а направление — по часовой стрелке.

• Третий случай разбирается аналогично второму.

Таким образом, все случаи сводятся к предположению индукции и лемма доказана.
Лемма 2. Пусть начало лежит на дуге AB размера 3l, а направление неизвестно. Тогда найти

вес одной монеты можно за l взвешиваний.
Доказательство. Докажем лемму по индукции, база для l = 0 очевидна, перейдём к шагу.

Разделим дугу AB на три равные дуги монетами M и N . Положим монеты A и B на левую чашу,
а M и N — на правую. Разберём случаи:

• Если чаши уравновесились, начало лежит на дуге MN и направление неизвестно, так что
утверждение сводится к предположению индукции.

• Если левая чаша легче правой, то либо начало на NB и направление — против часовой
стрелки, либо начало на AM , а направление — по часовой стрелке. Таким образом, ситуация
сводится к лемме 1 для l − 1.

• Оставшийся случай разбирается аналогично предыдущему.

Перейдём к доказательству основного утверждения для круга из 3k монет. Выберем монеты A,
B, C и D так,что дуга BC имеет размер 3k−2, дуги AB и CD — 3k−1, а DA — 2 ·3k−2 (напомним, что
у нас k ≥ 2). Положим на левую чашу монеты A и D, а на правую — B и C. Разберём возможные
результаты взвешиваний:

• Неравенство сводится к лемме 1 для дуг AB и CD.

• Равенство разбирается несколько сложнее. Выберем монету E, которая делит дугу DA по-
полам. Положим на одну чашу монеты C и D, а на другую — E и B. Равенство сведётся к
лемме 2, а неравенство — к лемме 1.

Более подробный разбор завершения решения оставим читателю.
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Рис. 1. Синими углами со стрелочками между монетами обозначены начало и направление ситуа-
ции, которая будет, если левая чаша легче, красными — если правая легче, зелеными — если они
равны. Соответственно, все стрелочки обозначают ситуации, возможные до очередного взвешива-
ния. «П» и «Л» указывают на монеты, которые надо положить на правую и левую чашу весов
соответственно.
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