Задача №11. Деление с остатком Лицей БГУ - №1

Автор: Пчелинцев Илья **Научный руководитель:** Шабан Светлана

Аннотация

Полностью решены пункты 1-3, 5 исходной постановки задачи. В пункте 4 приведены алгоритмы деления для всех отрицательных и большей части от возможных положительных значений d. Предложено множество обобщений, перечисленных в пункте 6.

Оглавление

ОГЛАВЛЕНИЕ	2
1. ОБЩИЕ СВОЙСТВА ДОПУСТИМЫХ МНОЖЕСТВ С ДЕЛЕНИЕМ	3
1.1 ПРЕОБРАЗОВАНИЕ ФУНКЦИИ Г	3
1.2 Несколько простых утверждений	3
1.3 Наибольший общий делитель	4
1.4 Основная теорема арифметики	5
1.4 Наименьшее общее кратное	6
2. ОБЩИЕ СВОЙСТВА КВАДРАТИЧНЫХ РАСШИРЕНИЙ ЦЕЛЫХ ЧИСЕЛ	8
3 РЕШЕНИЕ ЗАДАЧИ	15
Пункт 1	15
Пункт 2	15
Пункт 3	16
Пункт 4	17
Пункт 5	21
Пункт 6	22
ЛИТЕРАТУРА	23

1. Общие свойства допустимых множеств с делением

Пусть K — допустимое множество с функцией f, на котором имеет место деление с остатком. Пусть также в K нет делителей нуля. Если не делать этого допущения, то операция деления не будет определена однозначно. Например, можно взять $Z_4=\{0,1,2,3\}$ (кольцо вычетов по модулю 4) и f(x)=x. Нетрудно убедится, что это допустимое множество, на котором имеет место деление с остатком. Однако $2=2\cdot 3$ и $2=2\cdot 1$. Значит $\frac{2}{2}$ не определено однозначно.

Докажем несколько общих теорем.

1.1 Преобразование функции f

Преобразуем функцию f. Пусть f не принимает значение n. Тогда рассмотрим новую функцию f':

$$f'(x) = \begin{cases} f(x), & \text{если } f(x) < n \\ f(x) - 1, & \text{если } f(x) > n \end{cases}$$

Ясно, что если $f(a) \ge f(b)$, то $f'(a) \ge f'(b)$, и если f(a) > f(b), то f'(a) > f'(b). Значит K с функцией f' также допустимо и на нем имеет место деление с остатком.

Будем повторять это преобразование, пока f не станет сюрьективной. Теперь можем считать, что f принимает все значения.

1.2 Несколько простых утверждений

Утверждение 0. Если а делится на b, то $\frac{a}{b}$ определено однозначно.

Доказательство. Пусть существуют два корня уравнения a=xb. Обозначим их x и x'. Тогда:

$$0 = a - a = xb - x'b = b(x - x')$$

Так как в K нет делителей нуля и b не ноль, то x-x'=0. Противоречие с тем, что x и x' различные. \blacksquare

Утверждение 1. $x \neq 0 \Rightarrow f(x) \geq 1$

Доказательство. Пусть f(x)=0. Поделим x на x: $x=x\cdot k+r$, где f(r)< f(x)=0. Но f принимает только неотрицательные значения. Противоречие. Значит $f(x)\geq 1$.

Утверждение 2. f(1) = 1.

Доказательство. $x \neq 0 \Rightarrow f(x) = f(1 \cdot x) \geq f(1)$. Учитывая, что f сюрьективна и $f(1) \geq 1$ (утверждение 1), f(1) = 1. ■

Утверждение 3. $f(x) = 0 \Leftrightarrow x = 0$.

Доказательство. f сюрьективна, значит существует x, такой что f(x) = 0. Для любого ненулевого x $f(x) \ge 1$. Следовательно, x = 0.

1.3 Наибольший общий делитель

Определение. $\mathrm{HOД}(a,b)$ — элемент из K, который делит a и b, с наибольшим значением f от него.

Пусть x делит a. Тогда $f(a) = f(x \cdot k) \ge f(x)$, то есть f(x) ограничено. Значит, НОД существует. Однако НОД может быть не единственен. В таком случае под НОД(a,b) будем иметь в виду один из НОДов.

Алгоритм Евклида. Пусть дана пара элементов из K(a,b) и при этом $f(a) \ge f(b)$. Пусть c — остаток от деления a на b. Текущую пару заменяем на (b,c). Повторяем алгоритм пока один из элементов в паре не станет нулем.

Теорема 1. Алгоритм Евклида конечен и ненулевой элемент в последней паре есть $\mathrm{HOД}(a,b)$.

Доказательство. Поделим a на b с остатком:

$$a = b \cdot k + c, f(c) < f(b) \tag{1}$$

Таким образом, за один ход мы уменьшаем значение f от одного из чисел. Значит, когда-то f от одного из чисел будет равна 0. Из утверждения 3 следует, что это число само является нулем. Поэтому алгоритм конечен.

Покажем, что любой $\mathrm{HOД}(a,b)$ является также и $\mathrm{HOД}(c,b)$ и наоборот. Из (1) видно, что $\mathrm{HOД}(a,b)$ делит с и делит b по определению. Значит $f\big(\mathrm{HOД}(a,b)\big) \leq f\big(\mathrm{HOД}(c,b)\big)$. Аналогично $\mathrm{HOД}(c,b)$ делит a и b и $f\big(\mathrm{HOД}(a,b)\big) \geq f\big(\mathrm{HOД}(c,b)\big)$. Получаем $f\big(\mathrm{HOД}(a,b)\big) = f\big(\mathrm{HOД}(c,b)\big)$, что и есть определение $\mathrm{HOД}$.

Докажем, что ненулевой элемент в последней паре является НОДом последней пары. Другими словами $\mathrm{HOД}(x,0)=x$. Ясно, что x делит x и ноль. Пусть существует y делящий x и 0 и f(y)>f(x). Тогда $f(x)=f(ky)\geq f(y)$. Противоречие. \blacksquare

Теорема 2. Существуют $x, y \in K$ такие, что HOД(a, b) = xa + yb.

Доказательство. Выполним алгоритм Евклида для a и b, запоминая пару на каждом ходу. Покажем, что если Теорема 2 верна для одной пары, то она верна и для предыдущей. Пусть перед парой (b,c) была пара (a,b) и существуют x и y, такие что:

$$HOД(a,b) = HOД(b,c) = xb + yc$$

Из определения алгоритма Евклида:

$$a = b \cdot k + c, f(c) < f(b) \tag{1}$$

Теперь можем представить HOД(a,b) как необходимо: HOД(a,b) = (x-yk)b + ya.

Легко проверить теорему 2 для последней пары (y,0): $HOД(y,0)=y=y\cdot 1+0\cdot 0$. Значит, она верна и для первой пары. \blacksquare

1.4 Основная теорема арифметики

Определение. Назовем элемент x из K единичным, если f(x)=1. Ненулевой неединичный элемент из K назовем простым, если оно делится только на единичные элементы, на себя и на произведение себя на единичные элементы. Ненулевой элемент из K назовем составным, если он не единичный и не простой. Эквивалентное определение составного элемента — ненулевой элемент, который можно представить в виде произведения двух не единичных элементов из K.

Утверждение 3. Пусть p — простое и p делит ab. Тогда p делит a или b (или и a, и b).

Доказательство. Пусть p не делит а. Покажем $f(\mathrm{HOД}(a,p))=1$. Допустим обратное: $f\big(\mathrm{HOД}(a,p)\big)>1$. Тогда $\mathrm{HOД}(a,p)$ делит p, а значит $\mathrm{HOД}(a,p)=up$, где f(u)=1. Также $\mathrm{HOД}(a,p)=up$ делит a. Значит и p делит a. Но по предположению p не делит a. Противоречие.

По теореме 2 существуют x и y такие что

$$xa + yp = 1$$
$$xab + ypb = b$$

xab и ybp делятся на p. Значит и b делится на p. \blacksquare

Утверждение 3'. Пусть p – простое и p делит $a_1a_2\dots a_n$. Тогда p делит a_i .

Доказательство. Докажем индукцией по n. База n=2 проверена в утверждении 3. Пусть верно для n. Докажем, что верно и для n+1. p делит $(a_1a_2\dots a_n)a_{n+1}$. Применим утверждение 3 для чисел $a_1a_2\dots a_n$ и a_{n+1} . Если p делит $a_1a_2\dots a_n$, то по предположению индукции оно делит одно из a_i . Иначе p делит a_{n+1} . \blacksquare

Утверждение 4. Если b составной элемент, а a ненулевой, то f(ab) > f(a).

Доказательство. $f(ab) \ge f(a)$. Достаточно показать, что f(ab) не может быть равно f(a). Пусть это так. Разделим с остатком a на ab:

$$a = kab + r, f(r) < f(ab) = f(a)$$
 $r = a - kab$ $f(r) = fig(a(1 - kb)ig) \ge f(a)$ $(1 - kb \ne 0$, так как иначе $1 = f(1) = f(kb) \ge f(b) \ge 2$) Но $f(a) > f(r)$. Противоречие. \blacksquare

Основная теорема арифметики. Любой ненулевой элемент K единственным образом представляется как произведение простых с точностью до перестановки и домножения на единичные элементы.

Доказательство. Пусть x ненулевой элемент из K. Докажем теорему индукцией по f(x).

База: f(x) = 1. Пусть k делитель x. Тогда $1 = f(x) = f(kt) \ge f(k)$. То есть все делители x являются единичными и сам x единичный. Что и требовалось доказать.

Шаг: пусть утверждение верно для всех x таких что f(x) < n. Докажем для n. Пусть существует элемент α для которого $f(\alpha) = n$. Покажем, что x можно представить как произведение простых. Если α простое, то разложение уже есть. Если α составное, то $\alpha = ab$ где f(a), f(b) > 1. Согласно утверждению 4 $f(\alpha) = f(ab) > f(a), f(b)$. По предположению индукции a и b можно представить как произведение простых. Значит и $ab = \alpha$ можно.

Докажем теперь что это разложение единственно. Пусть существуют два различных разложения α на простые множители $\alpha = p_1p_2 \dots p_n = p_1'p_2' \dots p_m'$. p_1 делит $p_1'p_2' \dots p_m'$, и по утверждению 3' p_1 делит p_1' . Можем переобозначить индексы и считать, что p_1 делит p_1' . То есть $p_1' = up_1$, где u единичный элемент. Рассмотрим новое число $\beta = p_2 \dots p_n = up_2' \dots p_m'$. $f(\beta) < f(\alpha)$ по утверждению 4. Значит, по предположению индукции β единственным образом представляется как произведение простых с точностью до перестановки и домножения на единичные элементы. Следовательно, $p_2 \dots p_n$ и $up_2' \dots p_m'$ есть два одинаковых разложения. Из этого и $p_1' = up_1$ следует, что $p_1p_2 \dots p_n$ и $p_1'p_2' \dots p_m'$ есть два одинаковых разложения на простые. \blacksquare

1.4 Наименьшее общее кратное

Определение. HOK(a,b) есть элемент который делится на a и на b с наименьшем значение f от него.

Теорема 3.
$$HOK(a, b) = \frac{ab}{HOJ(a, b)}$$
.

Доказательство. Обозначим $\mathrm{HOД}(a,b)=d$, $\mathrm{HOK}(a,b)=m$. Тогда a=xd и b=yd. Ясно, что $f(\mathrm{HOД}(x,y))=1$ (иначе $\mathrm{HOД}(x,y)d$ делил бы a и b и $f(\mathrm{HOД}(x,y)d)>f(d)$, что противоречит выбору $d=\mathrm{HOД}(a,b)$).

Покажем $f(m) \ge f(xyd)$. a и b делят m. Значит,

$$m = ak = bl = xdk = ydl$$

 $xk = yl$

Из основной теоремы арифметики и $\mathrm{HOД}(x,y)=1$ следует, что x делит l. Таким образом:

$$m = ydl = yd(xt)$$
$$f(m) = f(ydxt) \ge f(yxd)$$

Ясно, что $\frac{ab}{\text{HOД}(a,b)} = xyd$ делится на a и на b. \blacksquare

2. Общие свойства квадратичных расширений целых чисел

Введем для удобства новые обозначения, отличные от данных в условии задачи:

$$\mathbb{Z}[\alpha] = \{a + b\alpha : a, b \in \mathbb{Z}\}\$$

$$\mathbb{Q}[\alpha] = \{a + b\alpha : a, b \in \mathbb{Q}\}\$$

Через O_K обозначим подмножество множества K, в котором каждый элемент является корнем многочлена второй степени с целыми коэффициентами и старшим коэффициентом равным 1. В этих обозначения $O_{\mathbb{Q}[\sqrt{d}]}$ это $\mathbb{Z}[\sqrt{d}]$ в обозначениях из условия задачи.

Далее будем считать, что d - целое число, которое не делится на квадрат простого числа.

Утверждение 2.0 Если
$$a,b \neq 0$$
 ϵ $\mathbb{Q}[\sqrt{d}]$, то и $\frac{a}{b}$ ϵ $\mathbb{Q}[\sqrt{d}]$

Доказательство. $\frac{a}{b} = \frac{x+y\sqrt{d}}{x'-y'\sqrt{d}} = \frac{(x'-y'\sqrt{d})(x+y\sqrt{d})}{x'^2-dy'^2}$ $\in \mathbb{Q}[\sqrt{d}]$ ($x'^2 \neq dy'^2$, так как d не делится на квадрат простого) ■

Пусть $x=a+b\sqrt{d}$ и принадлежит $O_{\mathbb{Q}[\sqrt{d}]}.$

Определение. $\bar{x} = a - b\sqrt{d}$ (x сопряженное)

Утверждение 2.1. Пусть $b \neq 0$. Тогда x является корнем только одного многочлена второй степени с целыми коэффициентами и старшим коэффициентом равным $1: x^2 - 2ax + a^2 - db^2$. Если b = 0, то x это целое число и является корнем того же уравнения, но не только его.

Доказательство. Пусть x корень уравнения $x^2 + px + q = 0$, где p и q целые. У этого уравнения есть два корня. Второй обозначим за y. По теореме Виета:

$$-p = x + y = a + b\sqrt{d} + y$$

Чтобы р было целым $y=-b\sqrt{d}+c$, где с рациональное. По теореме Виета:

$$q = xy = (a + b\sqrt{d})(c - b\sqrt{d}) = ac - b^2d + (bc - ab)\sqrt{d}$$
$$= ac - b^2d + b(c - a)\sqrt{d}$$

1) $b \neq 0$. Чтобы q было целым b(c-a)=0. Так как $b \neq 0$, то c=a.

Тогда p=-x-y=-2a и $q=xy=a^2-db^2$. Что и требовалось.

2) b=0. Тогда -p=a+c и q=ac. Пусть $a=\frac{s}{t}$, где s и t взаимно простые целые числа. Если a=0 то утверждение верно. Будем считать, что это не так.

$$c = \frac{q}{a} = \frac{qt}{s}$$
$$-p = a + c = \frac{s}{t} + \frac{qt}{s} = \frac{s^2 + qt^2}{ts}$$

Так как $\frac{s^2+qt^2}{ts}$ целое, то t делит s^2+qt^2 . Значит, t делит s. Так как t и s взаимно просты, то t=1. Следовательно, x целое число.

Нетрудно убедиться, что x это корень $x^2-2ax+a^2-db^2=(x-a)^2=0$. Но x может быть и корнем других многочленов второй степени с целыми коэффициентами и старшим коэффициентом равным 1. Например (x-a)(x-a-1)=0.

Теорема 2.1 Если $d\equiv 1\ (mod\ 4)$, то $O_{\mathbb{Q}[\sqrt{d}]}=\mathbb{Z}\left[rac{1+\sqrt{d}}{2}
ight]$. Если $d\ne 1\ (mod\ 4)$, то $O_{\mathbb{Q}[\sqrt{d}]}=\mathbb{Z}[\sqrt{d}]$.

 \mathcal{A} оказательство. Пусть $(a+b\sqrt{d}) \in O_{\mathbb{Q}[\sqrt{d}]}$ и является корнем $x^2+px+q=0$, где p и q целые. По формуле корней квадратного уравнения

$$a + b\sqrt{d} = \frac{-p + \sqrt{p^2 - 4q}}{2}$$

Значит, $a=rac{a'}{2}$ и $b=rac{b'}{2}$, где a' и b' целые числа.

Из утверждения 2.1:

$$q = a^2 - db^2 = \frac{a'^2 - db'^2}{4} \Rightarrow a'^2 - db'^2 \equiv 0 \pmod{4}$$
 (1)

а) Пусть $d \equiv 1 \pmod{4}$.

$$a'^2 - db'^2 \equiv a'^2 - b'^2 = (a' - b')(a' + b') \equiv 0 \pmod{4}$$

Что равносильно тому, что a' и b' имеют одинаковую четность. При этом $-p=a+b=\frac{a'+b'}{2}$ является целым числом. Ясно, что все числа вида $\frac{a+b\sqrt{d}}{2}$, где a и b целые числа одинаковой четности, принадлежат $O_{\mathbb{Q}[\sqrt{d}]}$ и только такие принадлежат.

$$\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] = \left\{a+b\frac{1+\sqrt{d}}{2}: a,b \in \mathbb{Z}\right\} = \left\{\frac{(2a+b)+b\sqrt{d}}{2}: a,b \in \mathbb{Z}\right\}$$

Понятно, что 2a+b и b независимо пробегают все пары целых чисел одинаковой четности. Что и требовалось доказать.

б) Пусть $d \neq 1 \ (mod \ 4)$. Тогда $d \neq 0 \ (mod \ 4)$ (иначе d делилось бы на квадрат простого). Перебором остатков можно убедиться, что $x^2 \equiv 0$ или $1(\ mod \ 4)$. Перебирая остатки по модулю 4 у d, a' и b' в (1) получаем, что a' и b' должны быть четные. Значит a и b целые числа. Ясно, что все числа

вида $a+b\sqrt{d}$, где a и b целые числа, принадлежат $O_{\mathbb{Q}[\sqrt{d}]}$ и только такие принадлежат. Следовательно $O_{\mathbb{Q}[\sqrt{d}]}=\mathbb{Z}[\sqrt{d}]$.

Утверждение 2.2.
$$\overline{(a+b\sqrt{d})(c+d\sqrt{d})} = \overline{(a+b\sqrt{d})} \cdot \overline{(c+d\sqrt{d})}$$
 Доказательство. $\overline{xy} = \overline{(a+b\sqrt{d})(c+d\sqrt{d})} = \overline{ac+bdd+(bc+ad)\sqrt{d}} = ac+bdd-(bc+ad)\sqrt{d} = (a-b\sqrt{d})(c-d\sqrt{d}) = \overline{(a+b\sqrt{d})} \cdot \overline{(c+d\sqrt{d})}$

Определение. Норма числа х это $N(x) = x\bar{x} = a^2 - db^2$

Утверждение 2.3.
$$N\left((a+b\sqrt{d})(c+e\sqrt{d})\right)=N(a+b\sqrt{d})N(c+e\sqrt{d})$$
 Доказательство. $N\left((a+b\sqrt{d})(c+e\sqrt{d})\right)=(a+b\sqrt{d})(c+e\sqrt{d})\cdot (\overline{a+b\sqrt{d}})(c+e\sqrt{d})=(a+b\sqrt{d})\overline{(a+b\sqrt{d})}(c+e\sqrt{d})=N(a+b\sqrt{d})N(c+e\sqrt{d})$

Определение. Для множества $\mathbb{Q}[\sqrt{d}]$ обозначим через $\beta_{\mathbb{Q}[\sqrt{d}]}$ наименьшее действительное число, для которого верно следующее утверждение:

для любого x из $\mathbb{Q}[\sqrt{d}]$ существует y из $O_{\mathbb{Q}[\sqrt{d}]}$ такой что $N(x-y) \leq \beta_{\mathbb{Q}[\sqrt{d}]}$

Лемма. Пусть дан не тупоугольный треугольник ABC с радиусом описанной окружности R и точка Q внутри его. Тогда $\min(QA,QB,QC) \leq R$.

B

Доказательство.

Обозначим через центр описанной окружности треугольника ABC. Так как ABCтупоугольный 0 лежит внутри или на границе ABC. без Можем ограничения общности считать, что Q лежит внутри или на границе ABO(который треугольника отрезком). быть может известному неравенству:

$$QA + QB \le OA + OB = 2R$$

Откуда следует, что $QA \leq R$ или $QB \leq R$.

Теорема 2.3 Пусть d натуральное число. Тогда:

$$eta_{\mathbb{Q}[\sqrt{-d}]} = egin{cases} rac{(d+1)^2}{16d}, & ext{ если } -d \equiv 1 (mod\ 4) \ rac{d+1}{4}, & ext{ если } -d \not\equiv 1 (mod\ 4) \end{cases}$$

Доказательство. Любому комплексному числу x+yi будем ставить в соостветствие точку на плоскости (x,y). Ясно, что $N\big((x+yi)-(x'+y'i)\big)=(x-x')^2+(y-y')^2$ есть квадрат расстояния между точками (x,y) и (x',y').

Тогда $eta_{\mathbb{Q}[\sqrt{-d}]}$ можно определить как наименьшее действительное число, для которого выполнено следующее: для любого x из $\mathbb{Q}[\sqrt{-d}]$ существует y из $O_{\mathbb{Q}[\sqrt{-d}]}$ такой, что квадрат расстояния между x и y не больше $eta_{\mathbb{Q}[\sqrt{-d}]}$.

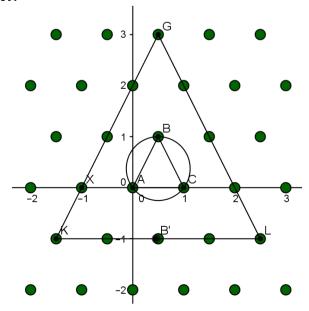
Решим задачу для произвольной целочисленной решетки, а потом подставим $O_{\mathbb{Q}[\sqrt{-d}]}$. Пусть даны два не коллинеарных комплексных числа z_1 и z_2 такие, что треугольник с вершинами 0, z_1 и z_2 не является тупоугольным. Рассмотрим множество:

$$A = \{az_1 + bz_2 : a, b \in \mathbb{Z}\}\$$

Будем называть A решёткой, порождённой векторами z_1 и z_2 .

Отметим все точки из A на плоскости. Проведем через каждый элемент A две прямые: одну параллельную z_1 , а другую параллельную z_2 . Получим решетку из равных параллелограммов. Далее проведем прямую через точки z_1 и z_2 . Через каждую точку из A проведем прямую параллельную этой. Теперь плоскость разбилась на равные не тупоугольные треугольники (ячейки). Обозначим радиус описанной окружности этого треугольника R.

Пусть x комплексное число. Точка x попадает внутрь или на границу какойто из ячеек. По лемме одно из расстояний до вершин этой ячейки не превосходит R.



Покажем, что ближайшие элементы из A для центра описанной окружности O одной из ячеек это ее вершины. Пусть O центр описанной окружности треугольника ABC. Рассмотрим треугольник KLM с вершинами в узлах решетки подобный ABC и содержащий ABC строго внутри (см. рис.). Опишем около ABC окружность. Так как $\angle ABC = \angle AB'C \leq 90^\circ$, то B' не лежит строго внутри описанной окружности ABC.

Следовательно $OB' \leq OB$. Ясно, что X не лежит внутри окружности. Итак, описанная окружность треугольника ABC лежит строго внутри треугольника KLM. Следовательно, ближайшая точка из A для O находится на расстоянии R.

Значит, для любой из точек плоскости найдется элемент из A на расстоянии не больше R. Это утверждение неверно для любой другой меньшей константы.

Когда $A=O_{\mathbb{Q}[\sqrt{-d}]}$ это и есть определение $\sqrt{eta_{\mathbb{Q}[\sqrt{-d}]}}.$

а) $-d \not\equiv 1 (mod \ 4)$. Тогда по теореме 2.1:

$$O_{\mathbb{Q}\left[\sqrt{-d}\right]} = \mathbb{Z}\left[\sqrt{-d}\right] = \left\{a + b\sqrt{-d} \colon a, b \in \mathbb{Z}\right\} = \left\{a + b\sqrt{d} \cdot i \colon a, b \in \mathbb{Z}\right\}$$

Значит эта решетка порождена 1 и $\sqrt{d} \cdot i$. Треугольник с вершинами $0,\ 1,$ $\sqrt{d} \cdot i$ прямоугольный и его радиус описанной окружности равен половине гипотенузы равен $\sqrt{\frac{1+d}{4}}$. Следовательно, $\beta_{\mathbb{Q}[\sqrt{-d}]} = \frac{1+d}{4}$.

б) $-d \equiv 1 \; (mod \; 4)$. Тогда по теореме 2.1:

$$O_{\mathbb{Q}\left[\sqrt{-d}\right]} = \mathbb{Z}\left[\frac{1+\sqrt{-d}}{2}\right] = \left\{a+b\left(\frac{1+\sqrt{-d}}{2}\right): a,b \in \mathbb{Z}\right\}$$

Значит, эта решетка порождена 1 и $\frac{1+\sqrt{-d}}{2}$. Треугольник с вершинами 0, 1, $\frac{1+\sqrt{-d}}{2}$ равнобедренный остроугольный. Действительно, при d=3 угол при вершине $\frac{1+\sqrt{-d}}{2}$ равен 60° , а с ростом d только уменьшается. Нетрудно убедится, что точка $\frac{1}{2}+\frac{d-1}{4d}i$ равноудалена от 0, 1, $\frac{1+\sqrt{-d}}{2}$. Значит, она является центром описанной окружности треугольника. Радиус этой окружности $\sqrt{\frac{(1+d)^2}{16d}}$. Следовательно, $\beta_{\mathbb{Q}[\sqrt{-d}]} = \frac{(1+d)^2}{16d}$.

Теорема 2.4 Пусть α не рациональный корень многочлена с целыми коэффициентами: $x^2+px+q=0$. Пусть $0\neq x=a+b\alpha\in\mathbb{Z}[\alpha]$. Тогда количество классов эквивалентности в $\mathbb{Z}[\alpha]$, по отношению a-b делится на x, равно $|a^2-abp+b^2q|$.

 \mathcal{L} оказательство. Заметим, что $lpha=rac{-p\pm\sqrt{p^2-4q}}{2}$. Так как lpha иррационально, то $\sqrt{p^2-4q}$ иррационально.

Для каждого $c+d\alpha$ на плоскости отметим точку с координатами (c,d). Рассмотрим множество всех кратных x:

$$A = \{(c + d\alpha)(a + b\alpha): c, d \in \mathbb{Z}[\alpha]\}$$

= \{c(a + b\alpha) + d(-bq + (a - bp)\alpha): c, d \in \mathbb{Z}[\alpha]\}

Соответствующее A множество точек на плоскости это решетка порожденная векторами $\overline{(a,b)}$ и $\overline{(-bq,a-bp)}$. Площадь одной ячейкипараллелограмма это

$$S = \left| det \begin{pmatrix} a & -bq \\ b & a - bp \end{pmatrix} \right| = |a^2 - abp + b^2q|$$

Покажем, что $S\neq 0$. Это значит, что векторы $\overline{(a,b)}$ и $\overline{(-bq,a-bp)}$ не коллинеарны. Пусть S=0. Тогда $a^2-abp+b^2q=0$. Так как $0\neq x$, то $a\neq 0$ или $b\neq 0$.

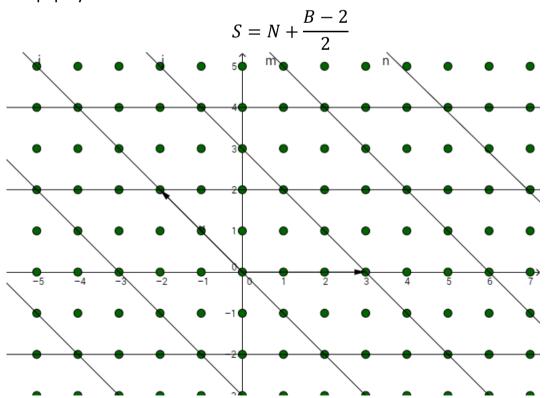
1) Пусть
$$a\neq 0$$
. Тогда $1-\frac{b}{a}p+\left(\frac{b}{a}\right)^2q=0$
$$\frac{b}{a}=\frac{-p\pm\sqrt{p^2-4q}}{2q}$$

Что противоречит тому, что $\frac{b}{a} \epsilon \mathbb{Q}$

2) Пусть
$$b \neq 0$$
. Тогда $\left(\frac{a}{b}\right)^2 - q\,\frac{a}{b} + p = 0$
$$\frac{a}{b} = \frac{q \pm \sqrt{p^2 - 4q}}{2}$$

Что противоречит тому, что $\frac{b}{a} \epsilon \mathbb{Q}$

По формуле Пика:



Где N — количество целых точек строго внутри ячейки, B — количество целых точек на границе ячейки. Так как ячейка это параллелограмм противолежащие стороны равны и параллельны, значит S это количество целых точек строго внутри ячейки и на векторах $\overline{(a,b)}$ и $\overline{(-bq,a-bp)}$ не включая точки (a,b) и (-bq,a-bp). Обозначим множество этих точек C. Ясно, что

$$C = \{x(a,b) + y(-bq, a - bp) : 0 \le x, y < 1\} \cap \mathbb{Z}^2$$

Покажем, что любые два элемента из C не принадлежат одному классу эквивалентности. Допустим противное. То есть $y,z\in C$ и $z-y\in A$. Ясно, что все элементы C единственным образом раскладываются по базису $\overline{(a,b)}$ и $\overline{(-bq,a-bp)}$:

$$z = z_1(a,b) + z_2(-bq, a - bp)$$

 $y = y_1(a,b) + y_2(-bq, a - bp)$

при этом $0 \le z_1, z_2, y_1, y_2 < 1$, так как z и y внутри параллелограмма на векторах (a,b) и (-bq, a-bp).

$$z - y = (z_1 - y_1)(a, b) + (z_2 - y_2)(-bq, a - bp)$$

Так как $x-y\in A$, то z_1-y_1 и z_2-y_2 целые числа. Учитывая

$$-1 < z_1 - y_1 < 1$$

 $-1 < z_2 - y_2 < 1$

Получаем $z_1 - y_1 = 0 = z_2 - y_2$. Но тогда x = y. Противоречие.

Пусть $z=z_1(a,b)+z_2(-bq,a-bp)$ и $y=y_1(a,b)+y_2(-bq,a-bp)$ — целочисленные точки. Ясно, что z-y делится на $a+b\alpha$ только когда $z_1-y_1\in\mathbb{Z}$ и $z_2-y_2\in\mathbb{Z}$. Чтобы z было эквивалентно y, нужно чтобы $\{z_1\}(a,b)+\{z_2\}(-bq,a-bp)=\{y_1\}(a,b)+\{y_2\}(-bq,a-bp)$. Заметим, что $\{z_1\}(a,b)+\{z_2\}(-bq,a-bp)=x-[z_1](a,b)+[z_1](-bq,a-bp)\in\mathbb{Z}^2$. Значит, $(\{z_1\}(a,b)+\{z_2\}(-bq,a-bp))\in\mathbb{C}$.

Таким образом, классов эквивалентности ровно $|a^2 - abp + b^2q|$.

Применим теорему 2.4 для множества $O_{\mathbb{Q}[\sqrt{d}]}=\mathbb{Z}[\alpha]$. Мы знаем, что \sqrt{d} это корень $x^2-d=0$, а $\frac{1+\sqrt{d}}{2}$ корень $x^2-x-\frac{d-1}{4}=0$. Легко проверить, что в любом случае количество классов эквивалентности по модулю $a+b\alpha$ равно $N(a+b\alpha)$.

Это аналогично случаю целых чисел, где количество классов эквивалентности по модулю q равно |q|.

3 Решение задачи

Пункт 1

 $\mathsf{C}\,Z$ все понятно.

$$\begin{split} Z[i] &= O_{\mathbb{Q}\left[\sqrt{-1}\right]} \\ Z[\omega] &= Z\left[\frac{-1+\sqrt{-3}}{2}\right] = Z\left[\frac{1+\sqrt{-3}}{2}\right] = O_{\mathbb{Q}\left[\sqrt{-3}\right]} \end{split}$$

Поэтому будем решать задачу для общего случая $O_{\mathbb{Q}[\sqrt{d}]}$. Явный вид $O_{\mathbb{Q}[\sqrt{d}]}$ предоставлен в теореме 2.1. Пусть $O_{\mathbb{Q}[\sqrt{d}]}=\mathbb{Z}[lpha]$.

Пункт 2

Докажем теперь, что $O_{\mathbb{Q}[\sqrt{d}]}$ является допустимым.

- 1) 0, $1 \in O_{\mathbb{Q}[\sqrt{d}]}$
- 2) Пусть $a,b \in O_{\mathbb{Q}[\sqrt{d}]}$. Ясно, что a+b , $a-b \in O_{\mathbb{Q}[\sqrt{d}]}$.

Заметим, что \sqrt{d} и $\frac{1+\sqrt{d}}{2}$ (когда $d\equiv 1 (mod\ 4)$) являются корнями следующих уравнений второй степени с целыми коэффициентами соответственно: $x^2=d$ и $x^2=x+\frac{d-1}{4}$. Поэтому при перемножении чисел a и b слагаемое с a0 можно заменить на выражение с меньшей степенью a0. А значит $ab\in O_{\mathbb{Q}[\sqrt{d}]}$.

3) $f(a+b\sqrt{d}\)=\left|N(a+b\sqrt{d}\)\right|=|a^2-db^2|$. Согласно утверждению 2.1 a^2-db^2 это последний коэффициент многочлена, корнем которого является $a+b\sqrt{d}$. Значит, $|a^2-db^2|$ - целое неотрицательное число.

Покажем, что $N(x)=0\Rightarrow x=0$. Пусть это не так. $x=a+b\sqrt{d}$. Тогда или a, или b не равно 0. А из $|a^2-db^2|=0\Rightarrow a^2=db^2$ следует, что ни a ни b не равно 0. Поэтому можем поделить на b^2 : $d=\left(\frac{a}{b}\right)^2$ что противоречит тому, что d не делится на квадрат простого.

Пусть $y \in O_{\mathbb{Q}[\sqrt{d}]}.$ Значит если x ненулевой элемент, то $N(x) \neq 0$ и можем записать:

$$|N(xy)| = |N(x)| \cdot |N(y)| \ge |N(y)|$$

что и требовалось доказать.

Посчитаем
$$f\left(a+b\frac{1+\sqrt{d}}{2}\right) = f\left(\frac{2a+b}{2}+\frac{b}{2}\sqrt{d}\right) = \left|\left(\frac{2a+b}{2}\right)^2-d\left(\frac{b}{2}\right)^2\right| = \left|a^2+ab+\frac{-d+1}{4}b^2\right|.$$

Пункт 3

Докажем для начала равносильность возможности деления в $O_{\mathbb{Q}[\sqrt{d}]}$ следующему:

для любого $x \in \mathbb{Q}\big[\sqrt{d}\big]$ существует $y \in O_{\mathbb{Q}[\sqrt{d}]}$ такой что |N(x-y)| < 1 (1)

Выведем утверждение (1) из возможности деления. Ясно, что любой $x \in \mathbb{Q}[\sqrt{d}]$ можно представить в виде $\frac{a+b\alpha}{c}$ где a,b,c целые числа. Поделим с остатком $a+b\alpha$ на c: $a+b\alpha=cz+r$, f(r)< f(c)

$$f(a + b\alpha - cz) < f(c)$$

$$\frac{f(a + b\alpha - cz)}{f(c)} < 1$$

$$f\left(\frac{a + b\alpha}{c} - z\right) < 1$$

Что и требовалось доказать.

Докажем в другую сторону. То есть из (1) выведем возможность деления. Пусть хотим поделить a на b, a, b ϵ $O_{\mathbb{Q}[\sqrt{d}]}$. Для числа $\frac{a}{b}$ (которое принадлежит $\mathbb{Q}[\sqrt{d}]$ согласно утверждению 2.0) найдется q ϵ $O_{\mathbb{Q}[\sqrt{d}]}$ такой что

$$f\left(\frac{a}{b} - q\right) < 1$$
$$f(a - qb) < f(b)$$

Тогда q это неполное частное, а a-qb остаток при делении а на b. Таким образом два определения равносильны.

Теперь ясно, что деление с остатком возможно в $O_{\mathbb{Q}[\sqrt{d}]}$ тогда и только тогда $eta_{\mathbb{Q}[\sqrt{d}]} < 1.$

Для d<0 можно воспользоваться теоремой 2.3. Легко получить, что деление возможно только в $\mathbb{Q}[\sqrt{-1}], \mathbb{Q}[\sqrt{-2}], \mathbb{Q}[\sqrt{-3}], \mathbb{Q}[\sqrt{-7}], \mathbb{Q}[\sqrt{-11}].$

Рассмотрим d>0. Нам потребуется следующая теорема, доказанная в [1]:

Теорема. Пусть дана функция $f(x,y)=ax^2+bxy+cy^2$, где $a,b,c\in\mathbb{Q}$, которая принимает как положительные, так и отрицательные значения. Тогда существуют $x_0,y_0\in\mathbb{Q}$ такие что для любых $x,y\in\mathbb{Z}$ выполнено:

$$|f(x_0 + x, y_0 + y)| \ge \frac{\sqrt{b^2 - 4ac}}{48}$$

Пусть $a+b\alpha\in O_{\mathbb{Q}[\sqrt{d}]}=\mathbb{Z}[\alpha]$. Рассмотрим $f(x,y)=N(x+\alpha y)$.

1)
$$d \equiv 2$$
 или $3 \pmod{4}$, $\alpha = \sqrt{d}$

$$f(x,y) = N(x + \sqrt{d}y) = x^2 - dy^2$$

Заметим, что f(0,1)<0 и f(1,0)>0. Значит, можем применить теорему. То есть существуют $x_0,y_0\in\mathbb{Q}$ такие что для любых $x,y\in\mathbb{Z}$ выполнено

$$|f(x_0 + x, y_0 + y)| = |N(x_0 + x + \sqrt{d}(y_0 + y))| = |N(x_0 + \sqrt{d}y_0 - (-x - \sqrt{d}y))|$$

$$\ge \frac{\sqrt{4d}}{48} = \frac{\sqrt{d}}{24}$$

Следовательно, $eta_{\mathbb{Q}[\sqrt{d}]} \geq rac{\sqrt{d}}{24}$. Получаем, что при $d \geq 24^2$ в $O_{\mathbb{Q}[\sqrt{d}]}$ деление невозможно.

2)
$$d \equiv 1 \pmod{4}$$
, $\alpha = \frac{1+\sqrt{d}}{2}$
 $f(x,y) = N\left(x + \frac{1+\sqrt{d}}{2}y\right) = x^2 + xy + \frac{-d+1}{4}y^2$

Заметим, что f(0,1) < 0 и f(1,0) > 0. Значит, можем применить теорему. То есть существуют $x_0, y_0 \in \mathbb{Q}$ такие что для любых $x, y \in \mathbb{Z}$ выполнено

$$|f(x_0 + x, y_0 + y)| = \left| N \left(x_0 + x + \frac{1 + \sqrt{d}}{2} (y_0 + y) \right) \right|$$

$$= \left| N \left(x_0 + \frac{1 + \sqrt{d}}{2} y_0 - \left(-x - y \frac{1 + \sqrt{d}}{2} \right) \right) \right| \ge \frac{\sqrt{d}}{48}$$

Следовательно, $eta_{\mathbb{Q}[\sqrt{d}]} \geq rac{\sqrt{d}}{48}$. Получаем, что при $d \geq 48^2$ в $O_{\mathbb{Q}[\sqrt{d}]}$ деление невозможно.

Согласно [2] деление возможно только при $d \in \{2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73\}.$

Пункт 4

Алгоритм 1 (работает для -8 < d < 4)

Пусть в допустимом множестве $O_{\mathbb{Q}[\sqrt{d}]}$ можно делить.

Хотим поделить a на b. Поделим a на b как в утверждении 2.0:

$$\frac{a}{b} = s + t\sqrt{d}$$

Если $d\equiv 1 (mod\ 4)$, то заменим s на $s+\frac{t}{2}$, а t на $\frac{t}{2}$. Тогда получим:

$$\frac{a}{b} = s + t \frac{\left(1 + \sqrt{d}\right)}{2}$$

Таким образом, в любом случае имеем:

$$\frac{a}{b} = s + t\alpha$$

Округлим s и t до ближайшего целого. То есть возьмем целые c и e такие что:

$$|s - c| \le \frac{1}{2}, |t - e| \le \frac{1}{2}$$

Докажем, что число $c+e\alpha$ является неполным частным, а a-bc остатком при делении a на b. Для этого достаточно показать:

$$f(a - bc) < f(b) \Leftrightarrow f\left(\frac{a}{b} - c\right) < 1 \Leftrightarrow f(s + t\alpha - c) < 1 \Leftrightarrow$$

$$f\left((s - c) + (t - e)\alpha\right) < 1$$
1) $d \equiv 1 \pmod{4}$. $\alpha = \frac{1 + \sqrt{d}}{2}$

$$f\left((s-c) + (t-e)\frac{1+\sqrt{d}}{2}\right) = \left|(s-c)^2 + (s-c)(t-e) + \frac{-d+1}{4}(t-e)^2\right|$$

Учитывая $|s-c| \le \frac{1}{2}$, $|t-d| \le \frac{1}{2}$, получаем:

$$\left| (s-c)^2 + (s-c)(t-e) + \frac{-d+1}{4}(t-e)^2 \right|$$

$$\leq \left| (s-c)^2 \right| + \left| (s-c)(t-e) \right| + \left| \frac{-d+1}{4}(t-e)^2 \right| \leq \frac{1}{2} + \frac{1-d}{16}$$

В этом случае d может быть равно только -3 или -7. Поэтому:

$$f\left((s-c) + (t-e)\frac{1+\sqrt{d}}{2}\right) \le \frac{1}{2} + \frac{1-d}{16} \le 1$$

Равенство достигается только когда s-c и t-e одного знака, d=7 и $(s-c)^2=(t-e)^2=\frac{1}{4}$. В этом случае мы заменяем c на c+1 или c-1 так, чтобы |s-c| осталось $\frac{1}{2}$, а знак s-c поменялся. Тогда:

$$f\left((s-c) + (t-e)\frac{1+\sqrt{d}}{2}\right) = \left|(s-c)^2 + (s-c)(t-e) + \frac{-d+1}{4}(t-e)^2\right|$$
$$= \frac{1}{4} - \frac{1}{4} + \frac{7+1}{4} \cdot \frac{1}{4} = \frac{1}{2} < 1$$

2)
$$d \neq 1 \pmod{4}$$
. $\alpha = \sqrt{d}$
$$f((s-c) + (t-e)\sqrt{d}) = |(s-c)^2 - d(t-e)^2|$$

Учитывая $|s-c| \le \frac{1}{2}$, $|t-e| \le \frac{1}{2}$ получаем:

$$|(s-c)^2 - d(t-e)^2| \le |(s-c)^2| + |-d| \cdot |(t-e)^2| \le \frac{|d|}{4} + \frac{1}{4}$$

В пункте 3 было получено, что в этом случае d может быть только 2,3,-1 или -2. Поэтому $f\left((s-c)+(t-e)\sqrt{d}\right) \leq \frac{3}{4}+\frac{1}{4}=1$. Равенство может достигается только в случае d=3 и $(s-c)^2=(t-e)^2=\frac{1}{4}$, но в этом случае:

$$f\left((s-c)+(t-e)\sqrt{d}
ight)=|(s-c)^2-d(t-e)^2|=rac{1}{2}$$
 Значит $f\left((s-c)+(t-e)\sqrt{d}
ight)<1.$

Алгоритм 2 (работает для d=-11)

В этом случае алгоритмом 1 делить не всегда получится. Хотим поделить a на b.Так же как и в алгоритме 1 определим s,t, но c и e по-другому:

$$c = [s], e = [t]$$

Тогда $A = \{(c + e\alpha)b, (c + 1 + e\alpha)b, (c + (e + 1)\alpha)b, (c + 1 + (e + 1)\alpha)b\}$ являются вершинами параллелограмма, в целочисленной решетке порожденной b и αb , который содержит a. Из рассуждений теоремы 2.2 следует, что от точки а до одной из точек A квадрат расстояния меньше 1. Значит, эта точка есть неполное частное. Теперь легко найти остаток.

Алгоритм 3 (работает для d=2,3,6,7)

Пусть хотим поделить с остатком a на b. Пусть $\frac{a}{b}=p+q\sqrt{d}$. Будем искать целые x,y такие что

$$\left| N\left(\frac{a}{b} - x - y\sqrt{d} \right) \right| = \left| N(p - x + (q - y)\sqrt{d}) \right| = \left| (p - x)^2 - d(q - y)^2 \right| < 1$$
 (1) $x + y\sqrt{d}$ будет неполным частным.

Сделаем замену $p \to \epsilon p + u$, $x \to \epsilon x + u$, где $\epsilon = 1$ или -1 и u целое число такие что $0 \le \epsilon p + u \le \frac{1}{2}$. При такой замене уравнение (1) не изменилось. Аналогичную замену сделаем для q и y. Теперь можем считать, что $0 \le p, q \le \frac{1}{2}$.

Покажем, что одна из пар $(x,y)=\{(0,0),(1,0),(-1,0)\}$ подходит. Пусть это не так. То есть для каждой из пар $|(p-x)^2-d(q-y)^2|\geq 1$. Значит, выполнены три условия:

1)
$$p^2 - dq^2 \ge 1$$
 или $p^2 - dq^2 \le -1$

2)
$$(p-1)^2 - dq^2 \ge 1$$
 или $(p-1)^2 - dq^2 \le -1$

3)
$$(p+1)^2 - dq^2 \ge 1$$
 или $(p+1)^2 - dq^2 \le -1$

Из 1) следует, что p и q не оба нули. Учитывая это, первая часть условия 2) не выполняется. Значит, выполнена вторая. Пусть верна первая часть условия 3). Комбинируя это с условием 2

$$(p+1)^2 - 1 - (p-1)^2 \ge (p+1)^2 - dq^2 \ge 1 \tag{2}$$

$$p \ge \frac{1}{2} \Rightarrow p = \frac{1}{2}$$

(2) можно переписать так

$$\frac{5}{4} = -1 + (p+1)^2 \ge dq^2 \ge 1 + (p-1)^2 = \frac{5}{4}$$

Значит $dq^2=\frac{5}{4}$ или $d(2q)^2=5\Rightarrow d|5\Rightarrow d=1$ или 5, что невозможно. Таким образом, первая часть условия 3) не выполняется и верна вторая часть:

$$2 \le (p+1)^2 + 1 \le dq^2$$
$$d > 8$$

Но в этом алгоритме d < 8. Противоречие. Значит одна из пар $(x,y) = \{(0,0),(1,0),(-1,0)\}$ подходит и обратными заменами можем получить начальное $x+y\sqrt{d}$.

Алгоритм 4 (работает для d = 5, 13, 17, 21, 29)

Будем действовать аналогично предыдущему алгоритму. Пусть хотим поделить с остатком a на b. Пусть $\frac{a}{b}=p+q\,\frac{1+\sqrt{d}}{2}$. Будем искать целые x,y такие что

$$\left| N\left(\frac{a}{b} - x - y\frac{1 + \sqrt{d}}{2}\right) \right| = \left| N\left(p - x - \frac{y}{2} + \left(q - \frac{y}{2}\right)\sqrt{d}\right) \right| =$$

$$= \left| \left(p - x - \frac{y}{2}\right)^2 - d\left(q - \frac{y}{2}\right)^2 \right| = \left| \left(p - x - \frac{y}{2}\right)^2 - \frac{d}{4}(2q - y)^2 \right| < 1$$

Заменим 2q на q.

$$\left| N\left(\frac{a}{b} - x - y\frac{1+\sqrt{d}}{2}\right) \right| = \left| \left(p - x - \frac{y}{2}\right)^2 - \frac{d}{4}(q-y)^2 \right|$$

Заменим (p,x,q,y) на $(\epsilon p+u,\epsilon x+u,\epsilon q,\epsilon y)$ где $\epsilon=\pm 1$ так чтобы $0\leq \epsilon p+u\leq \frac{1}{2}.$ Можем считать, что $0\leq r\leq \frac{1}{2}.$

Заменим (p,x,q,y) на (p,x-v,q+2v,y+2v), так чтобы $-1 \le q+2v \le 1$. Можем считать, что $-1 \le q \le 1$.

Если q < 0, то заменим (p, x, q, y) на (p, x + y, -q, -y). Можем считать, что $0 \le q \le 1$.

Если $\frac{1}{2} \le q \le 1$, то заменим (p,x,q,y) на $\left(\frac{1}{2}-p,-x,1-q,1-y\right)$. Можем считать, что $0 \le q \le \frac{1}{2}$.

Покажем, что одна из пар $(x,y)=\{(0,0),(1,0),(-1,0)\}$ подходит. Пусть это не так. То есть для каждой из пар $\left|\left(p-x-\frac{y}{2}\right)^2-\frac{d}{4}(q-y)^2\right|\geq 1$. Значит, выполнены три условия:

1)
$$p^2 - \frac{d}{4}q^2 \ge 1$$
 или $p^2 - \frac{d}{4}q^2 \le -1$

2)
$$(p-1)^2 - \frac{d}{4}q^2 \ge 1$$
 или $(p-1)^2 - \frac{d}{4}q^2 \le -1$

3)
$$(p+1)^2 - \frac{d}{4}q^2 \ge 1$$
 или $(p+1)^2 - \frac{d}{4}q^2 \le -1$

Условия аналогичны предыдущему алгоритму. Если первая часть условия 3) верна, то можно получить

$$\frac{d}{4}q^2 = \frac{5}{4}$$
$$q^2 = \frac{5}{d}$$

Так как d не делится на квадрат простого, то d=5 и q=1. Противоречие с выбором $q\leq \frac{1}{2}$.

Значит вторая часть условия 3) верна и

$$2 \le (p+1)^2 + 1 \le \frac{\mathrm{d}}{4}q^2$$

$$d \ge 32$$

Но в этом случае d < 32. Противоречие. Значит одна из пар $(x,y) = \{(0,0),(1,0),(-1,0)\}$ подходит и обратными заменами можем получить начальное $x+y\sqrt{d}$.

Пункт 5

Числа n и n-1, где n целое всегда принадлежат $O_{\mathbb{Q}[\sqrt{d}]}$. Поделим n-1 на n:

$$n-1 = 0n + n - 1, f(n-1) < f(n)$$

$$f(n-1) \le \alpha_{O_{\mathbb{Q}[\sqrt{d}]}} f(n)$$

$$|f(n-1)| \le (n-1)$$

$$\left| \left(1 - \frac{1}{n} \right)^2 \right| = f\left(\frac{n-1}{n} \right) \le \alpha_{O_{\mathbb{Q}[\sqrt{d}]}}$$

При достаточно большом п $\left(1-\frac{1}{n}\right)^2$ может быть насколько угодно близко к 1. Поэтому $\alpha_{O_{\mathbb{Q}[\sqrt{d}]}} \geq 1$. С другой стороны $\alpha_{O_{\mathbb{Q}[\sqrt{d}]}} = 1$ подходит.

Следуя рассуждениям доказательства равносильности иного определения деления из пункта 3 легко видеть, что $eta_{\mathbb{Q}[\sqrt{d}]}$ можно считать наименьшей константой такой, что для любых ненулевых $a,b\in O_{\mathbb{Q}[\sqrt{d}]}$ существует такой остаток r при делении a на b, что $f(r)\leq eta_{Q[\sqrt{d}]}f(b)$.

Исходя из различных значений констант α и β их определения не эквивалентны. Это значит, что деление с остатком в рассматриваемых множествах не единственно. Действительно можно несколькими способами поделить -1+4i на 2+i в $O_{\mathbb{O}[\sqrt{-1}]}$:

$$-1 + 4i = (2+i)(2i) + 1 = (2+i)(1+2i) + (-1-i) = (2+i)(i) + 2i$$

Пункт 6

По ходу решения было сделано множество обобщений, особенно в разделах 1 и 2. Перечислим основные полученные свойства допустимых множеств с делением:

- 1) верна основная теорема арифметики
- 2) работает алгоритм Евклида для нахождения НОД
- 3) верна формула для поиска НОК

Основные результаты в исследовании множеств $O_{\mathbb{Q}[\sqrt{d}]}$:

- 1) описан вид
- 2) доказана мультипликативность нормы
- 3) вычислена константа β для отрицательного d и оценена для положительного d
- 4) доказано, что количество классов эквивалентности по любому модулю z это |N(z)|. Это число является количеством классов остатков если в $O_{\mathbb{Q}[\sqrt{d}]}$ можно делить.

Таким образом, множество $O_{\mathbb{Q}[\sqrt{d}]}$ обладает многими свойствами присущими целым числа.

Литература

- [1] J. W. S. Cassels, The inhomogeneous minimum of binary quadratic, ternary cubic and quaternary quartic forms
- [2] Euclidean domain Norm-Euclidean fields https://en.wikipedia.org/wiki/Euclidean domain#Norm-Euclidean fields
 - [3] G. H. Hardy, E. M. Wright, An Introduction to the theory of numbers